Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
- P (Problem): focal chondral defect of the knee;
- I (Intervention): mACI;
- C (Comparison): glued, glued & sutured, no fixation;
- O (Outcomes): PROMs and complications.
- T (Timing): ≥ 12 months follow-up.
2.2. Data Source and Extraction
2.3. Eligibility Criteria
2.4. Outcomes of Interest
2.5. Methodology Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Search Result
3.2. Methodological Quality Assessment
3.3. Patient Demographics
3.4. Outcomes of Interest
3.5. Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Migliorini, F.; Berton, A.; Salvatore, G.; Candela, V.; Khan, W.; Longo, U.G.; Denaro, V. Autologous Chondrocyte Implantation and Mesenchymal Stem Cells for the Treatments of Chondral Defects Of The Knee- A Systematic Review. Curr. Stem Cell Res. Ther. 2020, 15, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Solheim, E.; Gay, C.; Hegna, J.; Inderhaug, E. Mosaicplasty of the Knee: Surgical Techniques, Pearls and Pitfall. J. Orthop. Rep. 2022, 1, 100097. [Google Scholar] [CrossRef]
- Jyothiprasanth, M.; Thomas, A.K.; Sarang, P. Patellar articular cartilage defect treated by minced cartilage graft and fibrin glue technology: A case report. J. Orthop. Rep. 2022, 1, 59–62. [Google Scholar] [CrossRef]
- Davila Castrodad, I.M.; Mease, S.J.; Werheim, E.; McInerney, V.K.; Scillia, A.J. Arthroscopic Chondral Defect Repair With Extracellular Matrix Scaffold and Bone Marrow Aspirate Concentrate. Arthrosc. Tech. 2020, 9, e1241–e1247. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Marsilio, E.; Oliva, F.; Eschweiler, J.; Hildebrand, F.; Maffulli, N. Chondral injuries in patients with recurrent patellar dislocation: A systematic review. J. Orthop. Surg Res. 2022, 17, 63. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.B.; Gomez-Florit, M.; Babo, P.S.; Domingues, R.M.; Reis, R.L.; Gomes, M.E. Blood derivatives awaken in regenerative medicine strategies to modulate wound healing. Adv. Drug Deliv. Rev. 2018, 129, 376–393. [Google Scholar] [CrossRef] [Green Version]
- Nichols, A.E.C.; Best, K.T.; Loiselle, A.E. The cellular basis of fibrotic tendon healing: Challenges and opportunities. Transl. Res. 2019, 209, 156–168. [Google Scholar] [CrossRef]
- Filippo, M.; Laura, M.; Riccardo, G.; Valeria, V.; Eschweiler, J.; Maffulli, N. Mesenchymal stem cells augmentation for surgical procedures in patients with symptomatic chondral defects of the knee: A systematic review. J. Orthop. Surg. Res. 2022, 17, 415. [Google Scholar] [CrossRef]
- Migliorini, F.; Eschweiler, J.; Schenker, H.; Baroncini, A.; Tingart, M.; Maffulli, N. Surgical management of focal chondral defects of the knee: A Bayesian network meta-analysis. J. Orthop. Surg. Res. 2021, 16, 543. [Google Scholar] [CrossRef]
- Mundi, R.; Bedi, A.; Chow, L.; Crouch, S.; Simunovic, N.; Sibilsky Enselman, E.; Ayeni, O.R. Cartilage Restoration of the Knee: A Systematic Review and Meta-analysis of Level 1 Studies. Am. J. Sport. Med. 2016, 44, 1888–1895. [Google Scholar] [CrossRef]
- Valtanen, R.S.; Arshi, A.; Kelley, B.V.; Fabricant, P.D.; Jones, K.J. Articular Cartilage Repair of the Pediatric and Adolescent Knee with Regard to Minimal Clinically Important Difference: A Systematic Review. Cartilage 2020, 11, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Karakaplan, M.; Elmali, N.; Mirel, E.; Sahin, N.; Ergen, E.; Elmali, C. Effect of microfracture and autologous-conditioned plasma application in the focal full-thickness chondral defect of the knee: An experimental study on rabbits. J. Orthop. Surg. Res. 2015, 10, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arumugam, S.; Bhupesh Karthik, B.; Chinnuswami, R.; Mori, Y.; Yoshioka, H.; Senthilkumar, R.; Mathaiyan, R.; Ramalingam, K.; Senthilkumar, P.; Abraham, S.J. Transplantation of autologous chondrocytes ex-vivo expanded using Thermoreversible Gelation Polymer in a rabbit model of articular cartilage defect. J. Orthop. 2017, 14, 223–225. [Google Scholar] [CrossRef] [PubMed]
- Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994, 331, 889–895. [Google Scholar] [CrossRef]
- Bartlett, W.; Skinner, J.A.; Gooding, C.R.; Carrington, R.W.; Flanagan, A.M.; Briggs, T.W.; Bentley, G. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: A prospective, randomised study. J. Bone Jt. Surg. Br. 2005, 87, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Driesang, I.M.; Hunziker, E.B. Delamination rates of tissue flaps used in articular cartilage repair. J. Orthop. Res. 2000, 18, 909–911. [Google Scholar] [CrossRef]
- Henderson, I.; Tuy, B.; Oakes, B. Reoperation after autologous chondrocyte implantation. Indications and findings. J. Bone Jt. Surg. Br. 2004, 86, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Kreuz, P.C.; Steinwachs, M.; Erggelet, C.; Krause, S.J.; Ossendorf, C.; Maier, D.; Ghanem, N.; Uhl, M.; Haag, M. Classification of graft hypertrophy after autologous chondrocyte implantation of full-thickness chondral defects in the knee. Osteoarthr. Cartil. 2007, 15, 1339–1347. [Google Scholar] [CrossRef] [Green Version]
- Micheli, L.J.; Browne, J.E.; Erggelet, C.; Fu, F.; Mandelbaum, B.; Moseley, J.B.; Zurakowski, D. Autologous chondrocyte implantation of the knee: Multicenter experience and minimum 3-year follow-up. Clin. J. Sport. Med. 2001, 11, 223–228. [Google Scholar] [CrossRef]
- Zeifang, F.; Oberle, D.; Nierhoff, C.; Richter, W.; Moradi, B.; Schmitt, H. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: A randomized clinical trial. Am. J. Sport. Med. 2010, 38, 924–933. [Google Scholar] [CrossRef]
- Macmull, S.; Jaiswal, P.K.; Bentley, G.; Skinner, J.A.; Carrington, R.W.; Briggs, T.W. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae. Int. Orthop. 2012, 36, 1371–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemeyer, P.; Salzmann, G.; Feucht, M.; Pestka, J.; Porichis, S.; Ogon, P.; Sudkamp, N.; Schmal, H. First-generation versus second-generation autologous chondrocyte implantation for treatment of cartilage defects of the knee: A matched-pair analysis on long-term clinical outcome. Int. Orthop. 2014, 38, 2065–2070. [Google Scholar] [CrossRef] [PubMed]
- Correa Bellido, P.; Wadhwani, J.; Gil Monzo, E. Matrix-induced autologous chondrocyte implantation grafting in osteochondral lesions of the talus: Evaluation of cartilage repair using T2 mapping. J. Orthop. 2019, 16, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Eschweiler, J.; Spiezia, F.; van de Wall, B.J.M.; Knobe, M.; Tingart, M.; Maffulli, N. Arthroscopy versus mini-arthrotomy approach for matrix-induced autologous chondrocyte implantation in the knee: A systematic review. J. Orthop. Traumatol. 2021, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Runer, A.; Jungmann, P.; Welsch, G.; Kummel, D.; Impellizzieri, F.; Preiss, S.; Salzmann, G. Correlation between the AMADEUS score and preoperative clinical patient-reported outcome measurements (PROMs) in patients undergoing matrix-induced autologous chondrocyte implantation (MACI). J. Orthop. Surg. Res. 2019, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Howick, J.; Chalmers, I.; Glasziou, P.; Greenhalgh, T.; Heneghan, C.; Liberati, A.; Moschetti, I.; Phillips, B.; Thornton, H.; Goddard, O.; et al. The 2011 Oxford CEBM Levels of Evidence. Oxf. Cent. Evid.-Based Med. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 1 January 2022).
- Higgins, L.D.; Taylor, M.K.; Park, D.; Ghodadra, N.; Marchant, M.; Pietrobon, R.; Cook, C.; International Knee Documentation, C. Reliability and validity of the International Knee Documentation Committee (IKDC) Subjective Knee Form. Jt. Bone Spine 2007, 74, 594–599. [Google Scholar] [CrossRef]
- Briggs, K.K.; Lysholm, J.; Tegner, Y.; Rodkey, W.G.; Kocher, M.S.; Steadman, J.R. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am. J. Sport. Med. 2009, 37, 890–897. [Google Scholar] [CrossRef]
- Akgun, I.; Unlu, M.C.; Erdal, O.A.; Ogut, T.; Erturk, M.; Ovali, E.; Kantarci, F.; Caliskan, G.; Akgun, Y. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: A 2-year randomized study. Arch. Orthop. Trauma Surg. 2015, 135, 251–263. [Google Scholar] [CrossRef]
- Basad, E.; Ishaque, B.; Bachmann, G.; Sturz, H.; Steinmeyer, J. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: A 2-year randomised study. Knee Surg. Sport. Traumatol. Arthrosc. 2010, 18, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Basad, E.; Wissing, F.R.; Fehrenbach, P.; Rickert, M.; Steinmeyer, J.; Ishaque, B. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: Clinical outcomes and challenges. Knee Surg. Sport. Traumatol. Arthrosc. 2015, 23, 3729–3735. [Google Scholar] [CrossRef] [PubMed]
- Brittberg, M.; Recker, D.; Ilgenfritz, J.; Saris, D.B.F.; Group, S.E.S. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Five-Year Follow-up of a Prospective Randomized Trial. Am. J. Sport. Med. 2018, 46, 1343–1351. [Google Scholar] [CrossRef]
- Cvetanovich, G.L.; Riboh, J.C.; Tilton, A.K.; Cole, B.J. Autologous Chondrocyte Implantation Improves Knee-Specific Functional Outcomes and Health-Related Quality of Life in Adolescent Patients. Am. J. Sport. Med. 2017, 45, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Ebert, J.R.; Fallon, M.; Ackland, T.R.; Wood, D.J.; Janes, G.C. Arthroscopic matrix-induced autologous chondrocyte implantation: 2-year outcomes. Arthroscopy 2012, 28, 952–964.e2. [Google Scholar] [CrossRef]
- Ebert, J.R.; Fallon, M.; Smith, A.; Janes, G.C.; Wood, D.J. Prospective clinical and radiologic evaluation of patellofemoral matrix-induced autologous chondrocyte implantation. Am. J. Sport. Med. 2015, 43, 1362–1372. [Google Scholar] [CrossRef] [Green Version]
- Ebert, J.R.; Fallon, M.; Wood, D.J.; Janes, G.C. A Prospective Clinical and Radiological Evaluation at 5 Years After Arthroscopic Matrix-Induced Autologous Chondrocyte Implantation. Am. J. Sport. Med. 2017, 45, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Efe, T.; Theisen, C.; Fuchs-Winkelmann, S.; Stein, T.; Getgood, A.; Rominger, M.B.; Paletta, J.R.; Schofer, M.D. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg. Sport. Traumatol. Arthrosc. 2012, 20, 1915–1922. [Google Scholar] [CrossRef]
- Ferruzzi, A.; Buda, R.; Faldini, C.; Vannini, F.; Di Caprio, F.; Luciani, D.; Giannini, S. Autologous chondrocyte implantation in the knee joint: Open compared with arthroscopic technique. Comparison at a minimum follow-up of five years. J. Bone Jt. Surg. Am. 2008, 90 (Suppl. 4), 90–101. [Google Scholar] [CrossRef]
- Filardo, G.; Kon, E.; Di Martino, A.; Iacono, F.; Marcacci, M. Arthroscopic second-generation autologous chondrocyte implantation: A prospective 7-year follow-up study. Am. J. Sport. Med. 2011, 39, 2153–2160. [Google Scholar] [CrossRef]
- Filardo, G.; Kon, E.; Andriolo, L.; Di Matteo, B.; Balboni, F.; Marcacci, M. Clinical profiling in cartilage regeneration: Prognostic factors for midterm results of matrix-assisted autologous chondrocyte transplantation. Am. J. Sport. Med. 2014, 42, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Gobbi, A.; Filardo, G.; Delcogliano, M.; Zaffagnini, S.; Marcacci, M. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: Prospective nonrandomized study at 5 years. Am. J. Sport. Med. 2009, 37, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Filardo, G.; Condello, V.; Collarile, M.; Di Martino, A.; Zorzi, C.; Marcacci, M. Second-generation autologous chondrocyte implantation: Results in patients older than 40 years. Am. J. Sport. Med. 2011, 39, 1668–1675. [Google Scholar] [CrossRef]
- Lopez-Alcorocho, J.M.; Aboli, L.; Guillen-Vicente, I.; Rodriguez-Inigo, E.; Guillen-Vicente, M.; Fernandez-Jaen, T.F.; Arauz, S.; Abelow, S.; Guillen-Garcia, P. Cartilage Defect Treatment Using High-Density Autologous Chondrocyte Implantation: Two-Year Follow-up. Cartilage 2018, 9, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Macmull, S.; Parratt, M.T.; Bentley, G.; Skinner, J.A.; Carrington, R.W.; Morris, T.; Briggs, T.W. Autologous chondrocyte implantation in the adolescent knee. Am. J. Sport. Med. 2011, 39, 1723–1730. [Google Scholar] [CrossRef]
- Marlovits, S.; Aldrian, S.; Wondrasch, B.; Zak, L.; Albrecht, C.; Welsch, G.; Trattnig, S. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am. J. Sport. Med. 2012, 40, 2273–2280. [Google Scholar] [CrossRef]
- Meyerkort, D.; Ebert, J.R.; Ackland, T.R.; Robertson, W.B.; Fallon, M.; Zheng, M.H.; Wood, D.J. Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee Surg. Sport. Traumatol. Arthrosc. 2014, 22, 2522–2530. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, P.; Laute, V.; John, T.; Becher, C.; Diehl, P.; Kolombe, T.; Fay, J.; Siebold, R.; Niks, M.; Fickert, S.; et al. The Effect of Cell Dose on the Early Magnetic Resonance Morphological Outcomes of Autologous Cell Implantation for Articular Cartilage Defects in the Knee: A Randomized Clinical Trial. Am. J. Sport. Med. 2016, 44, 2005–2014. [Google Scholar] [CrossRef]
- Niemeyer, P.; Laute, V.; Zinser, W.; Becher, C.; Kolombe, T.; Fay, J.; Pietsch, S.; Kuzma, T.; Widuchowski, W.; Fickert, S. A Prospective, Randomized, Open-Label, Multicenter, Phase III Noninferiority Trial to Compare the Clinical Efficacy of Matrix-Associated Autologous Chondrocyte Implantation With Spheroid Technology Versus Arthroscopic Microfracture for Cartilage Defects of the Knee. Orthop. J. Sport. Med. 2019, 7, 2325967119854442. [Google Scholar] [CrossRef] [Green Version]
- Saris, D.; Price, A.; Widuchowski, W.; Bertrand-Marchand, M.; Caron, J.; Drogset, J.O.; Emans, P.; Podskubka, A.; Tsuchida, A.; Kili, S.; et al. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Two-Year Follow-up of a Prospective Randomized Trial. Am. J. Sport. Med. 2014, 42, 1384–1394. [Google Scholar] [CrossRef]
- Schneider, U.; Rackwitz, L.; Andereya, S.; Siebenlist, S.; Fensky, F.; Reichert, J.; Loer, I.; Barthel, T.; Rudert, M.; Noth, U. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am. J. Sport. Med. 2011, 39, 2558–2565. [Google Scholar] [CrossRef] [PubMed]
- Schuttler, K.F.; Gotschenberg, A.; Klasan, A.; Stein, T.; Pehl, A.; Roessler, P.P.; Figiel, J.; Heyse, T.J.; Efe, T. Cell-free cartilage repair in large defects of the knee: Increased failure rate 5 years after implantation of a collagen type I scaffold. Arch. Orthop. Trauma Surg. 2019, 139, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Siebold, R.; Suezer, F.; Schmitt, B.; Trattnig, S.; Essig, M. Good clinical and MRI outcome after arthroscopic autologous chondrocyte implantation for cartilage repair in the knee. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.A.; Verner, A.; Flannery, C.R.; Archer, C.W. Cellular responses of embryonic hyaline cartilage to experimental wounding in vitro. J. Orthop. Res. 2000, 18, 25–34. [Google Scholar] [CrossRef]
- Hunziker, E.B.; Quinn, T.M. Surgical removal of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge. J. Bone Jt. Surg. Am. 2003, 85 (Suppl. 2), 85–92. [Google Scholar] [CrossRef]
- Anders, S.; Volz, M.; Frick, H.; Gellissen, J. A Randomized, Controlled Trial Comparing Autologous Matrix-Induced Chondrogenesis (AMIC(R)) to Microfracture: Analysis of 1- and 2-Year Follow-Up Data of 2 Centers. Open Orthop. J. 2013, 7, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, E.B.; Stahli, A. Surgical suturing of articular cartilage induces osteoarthritis-like changes. Osteoarthr. Cartil. 2008, 16, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Morales-Conde, S.; Balla, A.; Alarcon, I.; Sanchez-Ramirez, M. Minimally invasive repair of ventral hernia with one third of tackers and fibrin glue: Less pain and same recurrence rate. Minerva. Chir. 2020, 75, 292–297. [Google Scholar] [CrossRef]
- Wong, A.I.; McDonald, A.; Jones, B.; Berkowitz, D. Patch-and-Glue: Novel Technique in Bronchoesophageal Fistula Repair and Broncholith Removal With Stent and Fibrin Glue. J. Bronchol. Interv. Pulmonol. 2021, 28, e45–e49. [Google Scholar] [CrossRef]
- Nair, M.A.; Shaik, K.V.; Kokkiligadda, A.; Gorrela, H. Tissue-engineered Maxillofacial Skeletal Defect Reconstruction by 3D Printed Beta-tricalcium phosphate Scaffold Tethered with Growth Factors and Fibrin Glue Implanted Autologous Bone Marrow-Derived Mesenchymal Stem Cells. J. Med. Life 2020, 13, 418–425. [Google Scholar] [CrossRef]
- Sanghani-Kerai, A.; Coathup, M.; Brown, R.; Lodge, G.; Osagie-Clouard, L.; Graney, I.; Skinner, J.; Gikas, P.; Blunn, G. The development of a novel autologous blood glue aiming to improve osseointegration in the bone-implant interface. Bone Jt. Res. 2020, 9, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Cassaro, C.V.; Justulin, L.A., Jr.; de Lima, P.R.; Golim, M.A.; Biscola, N.P.; de Castro, M.V.; de Oliveira, A.L.R.; Doiche, D.P.; Pereira, E.J.; Ferreira, R.S., Jr.; et al. Fibrin biopolymer as scaffold candidate to treat bone defects in rats. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, e20190027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karp, J.M.; Tanaka, T.S.; Zohar, R.; Sodek, J.; Shoichet, M.S.; Davies, J.E.; Stanford, W.L. Thrombin mediated migration of osteogenic cells. Bone 2005, 37, 337–348. [Google Scholar] [CrossRef]
- Pagel, C.N.; de Niese, M.R.; Abraham, L.A.; Chinni, C.; Song, S.J.; Pike, R.N.; Mackie, E.J. Inhibition of osteoblast apoptosis by thrombin. Bone 2003, 33, 733–743. [Google Scholar] [CrossRef]
- Filardo, G.; Drobnic, M.; Perdisa, F.; Kon, E.; Hribernik, M.; Marcacci, M. Fibrin glue improves osteochondral scaffold fixation: Study on the human cadaveric knee exposed to continuous passive motion. Osteoarthr. Cartil. 2014, 22, 557–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.; Moyer, H.; Williams, J.K.; Schwartz, Z.; Boyan, B.D. Fibrin glue: A scaffold for cellular-based therapy in a critical-sized defect. Ann. Plast Surg. 2011, 66, 301–305. [Google Scholar] [CrossRef]
- Zheng, M.H.; Willers, C.; Kirilak, L.; Yates, P.; Xu, J.; Wood, D.; Shimmin, A. Matrix-induced autologous chondrocyte implantation (MACI): Biological and histological assessment. Tissue Eng. 2007, 13, 737–746. [Google Scholar] [CrossRef]
- Migliorini, F.; Prinz, J.; Maffulli, N.; Eschweiler, J.; Weber, C.; Lecoutrier, S.; Hildebrand, F.; Greven, J.; Schenker, H. Fibrin glue does not assist migration and proliferation of chondrocytes in collagenic membranes: An in vitro study. J. Orthop. Surg. Res. 2022, 17, 311. [Google Scholar] [CrossRef]
- Teo, B.J.; Buhary, K.; Tai, B.C.; Hui, J.H. Cell-based therapy improves function in adolescents and young adults with patellar osteochondritis dissecans. Clin. Orthop. Relat. Res. 2013, 471, 1152–1158. [Google Scholar] [CrossRef] [Green Version]
- Nejadnik, H.; Hui, J.H.; Feng Choong, E.P.; Tai, B.C.; Lee, E.H. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: An observational cohort study. Am. J. Sport. Med. 2010, 38, 1110–1116. [Google Scholar] [CrossRef]
- Koh, Y.G.; Kwon, O.R.; Kim, Y.S.; Choi, Y.J.; Tak, D.H. Adipose-Derived Mesenchymal Stem Cells With Microfracture Versus Microfracture Alone: 2-Year Follow-up of a Prospective Randomized Trial. Arthroscopy 2016, 32, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, A.; Scotti, C.; Karnatzikos, G.; Mudhigere, A.; Castro, M.; Peretti, G.M. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg. Sport. Traumatol. Arthrosc. 2017, 25, 2494–2501. [Google Scholar] [CrossRef] [Green Version]
- Longo, U.G.; Rizzello, G.; Berton, A.; Ciuffreda, M.; Migliorini, F.; Khan, W.S.; Denaro, V. Potential of adipose derived stem cells in orthopaedic surgery. Curr. Stem Cell Res. Ther. 2013, 8, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Rath, B.; Colarossi, G.; Driessen, A.; Tingart, M.; Niewiera, M.; Eschweiler, J. Improved outcomes after mesenchymal stem cells injections for knee osteoarthritis: Results at 12-months follow-up: A systematic review of the literature. Arch. Orthop. Trauma Surg. 2020, 140, 853–868. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Rath, B.; Tingart, M.; Baroncini, A.; Quack, V.; Eschweiler, J. Autogenic mesenchymal stem cells for intervertebral disc regeneration. Int. Orthop. 2019, 43, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Journal | Study Design | Follow-up (months) | Membrane Fixation | Procedures (n) | Female (%) | Mean Age | Mean BMI |
---|---|---|---|---|---|---|---|---|
Akgun et al. 2015 [30] | Arch Orthop Trauma Surg | RCT | 24 | Control Group | 7 | 0.5714 | 32.3 | 24.1 |
Both | 7 | 0.5714 | 32.7 | 24.3 | ||||
Basad et al. 2010 [31] | Knee Surg Sports Traumatol Arthrosc | RCT | 24 | Glued | 40 | 0.38 | 33 | 25.3 |
Control Group | 20 | 0.15 | 37.5 | 27.3 | ||||
Basad et al. 2014 [32] | Knee Surg Sports Traumatol Arthrosc | Non-RCT | 60 | Glued | 25 | 0.37 | 32 | 24 |
Brittberg et al. 2018 [33] | Am J Sports Med | RCT | 60 | Glued | 65 | 0.38 | 35 | |
Control Group | 63 | 0.33 | 34 | |||||
Cvetanovich et al. 2017 [34] | Am J Sports Med | Non-RCT | 24 | Control Group | 12 | 0.22 | 17 | 22.8 |
24 | Both | 11 | 0.22 | 17 | 22.8 | |||
24 | Both | 14 | 0.22 | 17 | 22.8 | |||
Ebert et al. 2012 [35] | Arthroscopy | Non-RCT | 24 | Glued | 20 | 0.5 | 34 | 26.6 |
Ebert et al. 2015 [36] | Am J Sports Med | Non-RCT | 24 | Glued | 10 | 0.2 | 39 | 25.8 |
Glued | 13 | 0.07 | 36 | 25.6 | ||||
Glued | 9 | 0.66 | 38 | 25.1 | ||||
Glued | 15 | 0.53 | 37 | 25.3 | ||||
Ebert et al. 2017 [37] | Am J Sports Med | Non-RCT | 60 | Glued | 31 | 0.51 | 35 | 26 |
Efe et al. 2011 [38] | Am J Sports Med | Non-RCT | 24 | None | 15 | 0.6 | 26 | |
Ferruzzi et al. 2008 [39] | J Bone Joint Surg | Non-RCT | 60 | Control Group | 48 | 0.38 | 32 | |
None | 50 | 0.28 | 31 | |||||
Filardo et al. 2011 [40] | Am J Sports Med | Non-RCT | 84 | None | 62 | 0.23 | 28 | |
Filardo et al. 2014 [41] | Am J Sports Med | Non-RCT | 84 | None | 131 | 0.35 | 29 | 24 |
Kon et al. 2009 [42] | Am J Sports Med | Non-RCT | 60 | None | 40 | 0.17 | 29 | |
Control Group | 40 | 0.32 | 31 | |||||
Kon el al. 2011 [43] | Am J Sports Med | Non-RCT | 61 | None | 22 | 0.32 | 46 | 24.7 |
58 | Glued | 39 | 0.35 | 45 | 25.6 | |||
Lopez-Alcorocho et al. 2018 [44] | Cartilage | Non-RCT | 24 | Both | 50 | 0.3 | 35 | |
Macmull et al. 2011 [45] | Int Orthop | Non-RCT | 66 | Control Group | 24 | 0.29 | 16 | |
Both | 7 | |||||||
Macmull et al. 2012 [21] | Am J Sports Med | Non-RCT | 45 | Control Group | 25 | 0.8 | 35 | |
35.3 | Glued | 23 | 0.61 | 35 | ||||
Marlovits et al. 2012 [46] | Am J Sports Med | Non-RCT | 60 | Glued | 24 | 0.12 | 35 | |
Meyerkort et al. 2014 [47] | Knee Surg Sports Traumatol Arthrosc | Non-RCT | 60 | Both | 23 | 42 | ||
Niemeyer et al. 2016 [48] | Am J Sports Med | RCT | 12 | None | 25 | 0.33 | 33 | 24.9 |
None | 25 | 0.16 | 34 | 25.6 | ||||
None | 25 | 0.4 | 34 | 25.1 | ||||
Niemeyer et al. 2019 [49] | Orthop J Sports Med | RCT | 24 | None | 52 | 0.36 | 36 | 25.7 |
Control Group | 50 | 0.44 | 37 | 25.8 | ||||
Saris et al. 2014 [50] | Am J Sports Med | RCT | 24 | Glued | 72 | 0.37 | 35 | 26.2 |
Control Group | 72 | 33 | 26.4 | |||||
Schneider et al. 2011 [51] | Am J Sports Med | Non-RCT | 30.2 | Glued | 116 | 0.42 | 33 | 24.5 |
Schüttler et al. 2019 [52] | Arch Orthop Trauma Surg | Non-RCT | 60 | None | 23 | 0.34 | 27.8 | |
Siebold et al. 2018 [53] | Knee Surg Sports Traumatol Arthrosc | Non-RCT | 34.8 | None | 30 | 0.36 | 36 | 23.8 |
Zeifang et al. 2010 [20] | Am J Sports Med | RCT | 24 | Both | 11 | 0.45 | 29 | |
Control Group | 10 | 0 | 30 |
Endpoint | Sutured & Glued | Glued | No Fixation | P | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | SE | Mean | SD | SE | Mean | SD | SE | ||
Tegner | 5.50 | 1.12 | 0.80 | 4.50 | 0.87 | 0.50 | 5.10 | 0.14 | 0.07 | 0.3 |
IKDC | 66.73 | 3.65 | 1.82 | 69.75 | 3.62 | 1.81 | 76.34 | 5.94 | 2.43 | 0.03 |
Endpoint | Sutured & Glued | Glued | No Fixation | P |
---|---|---|---|---|
Failure | 6/34 (18%) | 37/330 (11%) | 25/318 (8%) | 0.1 |
Revision | 13/84 (15%) | 16/165 (10%) | 5/154 (3%) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliorini, F.; Vaishya, R.; Bell, A.; Weber, C.D.; Götze, C.; Maffulli, N. Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review. Life 2022, 12, 1718. https://doi.org/10.3390/life12111718
Migliorini F, Vaishya R, Bell A, Weber CD, Götze C, Maffulli N. Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review. Life. 2022; 12(11):1718. https://doi.org/10.3390/life12111718
Chicago/Turabian StyleMigliorini, Filippo, Raju Vaishya, Andreas Bell, Christian D. Weber, Christian Götze, and Nicola Maffulli. 2022. "Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review" Life 12, no. 11: 1718. https://doi.org/10.3390/life12111718
APA StyleMigliorini, F., Vaishya, R., Bell, A., Weber, C. D., Götze, C., & Maffulli, N. (2022). Fixation of the Membrane during Matrix-Induced Autologous Chondrocyte Implantation in the Knee: A Systematic Review. Life, 12(11), 1718. https://doi.org/10.3390/life12111718