Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients—An Open-Label Phase II Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Convalescent Plasma
2.3. Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
References
- WHO. Cornavirus Disease (COVID-19). Available online: https://covid19.who.int/ (accessed on 27 August 2022).
- Franchini, M.; Glingani, C.; Donno, G.; Lucchini, G.; Beccaria, M.; Amato, M.; Castelli, G.P.; Bianciardi, L.; Pagani, M.; Ghirardini, M.; et al. Convalescent Plasma for Hospitalized COVID-19 Patients: A Single-Center Experience. Life 2022, 12, 420. [Google Scholar] [CrossRef] [PubMed]
- Tobaiqy, M.; Qashqary, M.; Al-Dahery, S.; Mujallad, A.; Hershan, A.A.; Kamal, M.A.; Helmi, N. Therapeutic management of patients with COVID-19: A systematic review. Infect. Prev. Pract. 2020, 2, 100061. [Google Scholar] [CrossRef] [PubMed]
- Heustess, A.M.; Allard, M.A.; Thompson, D.K.; Fasinu, P.S. Clinical management of COVID-19: A Review of pharmacological treatment options. Pharmaceuticals 2021, 14, 520. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L.A. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020, 130, 1545–1548. [Google Scholar] [CrossRef] [Green Version]
- Mair-Jenkins, J.; Saavedra-Campos, M.; Baillie, J.K.; Cleary, P.; Khaw, F.M.; Lim, W.S.; Makki, S.; Rooney, K.D.; Nguyen-Van-Tam, J.S.; Beck, C.R.; et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J. Infect. Dis. 2015, 211, 80–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casadevall, A.; Pirofski, L.A.; Joyner, M.J. The Principles of Antibody Therapy for Infectious Diseases with Relevance for COVID-19. mBio 2021, 12, e03372-20. [Google Scholar] [CrossRef] [PubMed]
- Burnouf, T.; Radosevich, M. Treatment of severe acute respiratory syndrome with convalescent plasma. Hong Kong Med. J. 2003, 9, 309. [Google Scholar] [PubMed]
- van Griensven, J.; Edwards, T.; de Lamballerie, X.; Semple, M.G.; Gallian, P.; Baize, S.; Horby, P.W.; Raoul, H.; Magassouba, N.; Antierens, A.; et al. Ebola-Tx Consortium. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N. Engl. J. Med. 2016, 374, 33–42. [Google Scholar] [CrossRef]
- Zhou, B.; Zhong, N.; Guan, Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N. Engl. J. Med. 2007, 357, 1450–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, I.F.; To, K.K.; Lee, C.K.; Lee, K.L.; Chan, K.; Yan, W.W.; Liu, R.; Watt, C.L.; Chan, W.M.; Lai, K.Y.; et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin. Infect. Dis. 2011, 52, 447–456. [Google Scholar] [CrossRef] [PubMed]
- WHO. Use of Convalescent Whole Blood or Plasma Collected from Patients Recovered from Ebola Virus Disease for Transfusion, as an Empirical Treatment during Outbreaks. 2014. Available online: http://apps.who.int/iris/rest/bitstreams/604045/retrieve (accessed on 19 August 2022).
- Crowe, J.E.; Firestone, C.Y.; Murphy, B.R. Passively acquired antibodies Suppress Humoral But Not Cell-Mediated Immunity in Mice Immunized with Live Attenuated Respiratory Syncytial Virus vaccines. J. Immunol. 2001, 167, 3910–3918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soo, Y.O.; Cheng, Y.; Wong, R.; Hui, D.S.; Lee, C.K.; Tsang, K.K.; Ng, M.H.; Chan, P.; Cheng, G.; Sung, J.J. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin. Microbiol. Infect. 2004, 10, 676–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Wong, R.; Soo, Y.O.; Wong, W.S.; Lee, C.K.; Ng, M.H.; Chan, P.; Wong, K.C.; Leung, C.B.; Cheng, G. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 44–46. [Google Scholar] [CrossRef] [PubMed]
- Bloch, E.; Bailey, J.; Tobian, A. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Investig. 2020, 130, 2757–2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis. 2020, 20, 398–400. [Google Scholar] [CrossRef]
- Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020, 323, 1582–1589. [Google Scholar] [CrossRef]
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 2020, 117, 9490–9496. [Google Scholar] [CrossRef] [Green Version]
- Joyner, M.J.; Klassen, S.A.; Senefeld, J.W.; Johnson, P.W.; Carter, R.E.; Wiggins, C.C.; Shoham, S.; Grossman, B.J.; Henderson, J.P.; Musser, J.M.; et al. Evidence favouring the efficacy of convalescent plasma for COVID-19 therapy. medRxiv 2020. [Google Scholar] [CrossRef]
- Focosi, D.; Franchini, M.; Pirofski, L.A.; Burnouf, T.; Paneth, N.; Joyner, M.J.; Casadevall, A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin. Microbiol. Rev. 2022, 9, e0020021. [Google Scholar] [CrossRef]
- Focosi, D.; Mazzetti, P.; Pistello, M.; Maggi, F. Viral infection neutralization tests: A focus on SARS-CoV-2 with implications for convalescent plasma therapy. Rev. Med. Virol. 2020, 31, e2170. [Google Scholar]
- Focosi, D.; Franchini, M.; Pirofski, L.A.; Burnouf, T.; Fairweather, D.; Joyner, M.J.; Casadevall, A. COVID-19 Convalescent Plasma Is More than Neutralizing Antibodies: A Narrative Review of Potential Beneficial and Detrimental Co-Factors. Viruses 2021, 13, 1594. [Google Scholar] [CrossRef] [PubMed]
- Thorlund, K.; Dron, L.; Park, J.; Hsu, G.; Forrest, J.I.; Mills, E.J. A real-time dashboard of clinical trials for COVID-19. Lancet Digit. Health 2020, 2, e286–e287. [Google Scholar] [CrossRef]
- Müller-Olling, M.; Vahlensieck, U.; Hilger, A. Heterogeneity in COVID-19 Convalescent Plasma Clinical Trials. Clin. Pharmacol. Ther. 2022, 111, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Sanz, C.; Nomdedeu, M.; Pereira, A.; Sauleda, S.; Alonso, R.; Bes, M.; Brillembourg, H.; García-Vidal, C.; Millan, A.; Martínez-Llonch, N.; et al. Efficacy of early transfusion of convalescent plasma with high-titer SARS-CoV-2 neutralizing antibodies in hospitalized patients with COVID-19. Transfusion 2022, 62, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Altuntas, F.; Ata, N.; Yigenoglu, T.N.; Bascı, S.; Dal, M.S.; Korkmaz, S.; Namdaroglu, S.; Basturk, A.; Hacıbekiroglu, T.; Dogu, M.H.; et al. Convalescent plasma therapy in patients with COVID-19. Transfus. Apher. Sci. 2021, 60, 102955. [Google Scholar] [CrossRef] [PubMed]
- Ray, Y.; Paul, S.R.; Bandopadhyay, P.; D’Rozario, R.; Sarif, J.; Lahiri, A.; Bhowmik, D.; Vasudevan, J.S.; Maurya, R.; Kanakan, A.; et al. Clinical and immunological benefits of convalescent plasma therapy in severe COVID-19: Insights from a single center open label randomized control trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Allahyari, A.; Seddigh-Shamsi, M.; Mahmoudi, M.; Amel Jamehdar, S.; Amini, M.; Mozdourian, M.; Javidarabshahi, Z.; Eslami Hasan Abadi, S.; Amini, S.; Sedaghat, A.; et al. Efficacy and safety of convalescent plasma therapy in severe COVID-19 patients with acute respiratory distress syndrome. Int. Immunopharmacol. 2021, 93, 107239. [Google Scholar] [CrossRef]
- Libster, R.; Perez Marc, G.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef]
- Casadevall, A.; Grossman, B.J.; Henderson, J.P.; Joyner, M.J.; Shoham, S.; Pirofski, L.A.; Paneth, N. The Assessment of Convalescent Plasma Efficacy against COVID-19. Med 2020, 1, 66–77. [Google Scholar] [CrossRef]
- Joyner, M.J.; Carter, R.E.; Senefeld, J.W.; Klassen, S.A.; Mills, J.R.; Johnson, P.W.; Theel, E.S.; Wiggins, C.C.; Bruno, K.A.; Klompas, A.M.; et al. Convalescent Plasma Antibody Levels and the Risk of Death from COVID-19. N. Engl. J. Med. 2021, 384, 1015–1027. [Google Scholar] [CrossRef]
- Alsharidah, S.; Ayed, M.; Ameen, R.M.; Alhuraish, F.; Rouheldeen, N.A.; Alshammari, F.R.; Embaireeg, A.; Almelahi, M.; Adel, M.; Dawoud, M.E.; et al. COVID-19 convalescent plasma treatment of moderate and severe cases of SARSCoV-2 infection: A multicenter interventional study. Int. J. Infect. Dis. 2021, 103, 439–446. [Google Scholar] [CrossRef]
- Salazar, E.; Perez, K.K.; Ashraf, M.; Chen, J.; Castillo, B.; Christensen, P.A.; Eubank, T.; Bernard, D.W.; Eagar, T.N.; Long, S.W.; et al. Treatment of coronavirus disease 2019 (COVID-19) patients with convalescent plasma. Am. J. Pathol. 2020, 190, 1680–1690. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.R.; Grinsztejn, B.; Cummings, M.J.; Justman, J.E.; Lamb, M.R.; Eckhardt, C.M.; Philip, N.M.; Cheung, Y.K.; Gupta, V.; João, E.; et al. A randomized double-blind controlled trial of convalescent plasma in adults with severe COVID-19. J. Clin. Investig. 2021, 131, e150646. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Christensen, P.A.; Graviss, E.A.; Nguyen, D.T.; Castillo, B.; Chen, J.; Lopez, B.V.; Eagar, T.N.; Yi, X.; Zhao, P.; et al. Treatment of Coronavirus Disease 2019 Patients with Convalescent Plasma Reveals a Signal of Significantly Decreased Mortality. Am. J. Pathol. 2020, 190, 2290–2303. [Google Scholar] [CrossRef] [PubMed]
- Salazar, E.; Christensen, P.A.; Graviss, E.A.; Nguyen, D.T.; Castillo, B.; Chen, J.; Lopez, B.V.; Eagar, T.N.; Yi, X.; Zhao, P.; et al. Significantly Decreased Mortality in a Large Cohort of Coronavirus Disease 2019 (COVID-19) Patients Transfused Early with Convalescent Plasma Containing High-Titer Anti-Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike Protein IgG. Am. J. Pathol. 2021, 191, 90–107. [Google Scholar] [CrossRef]
- Klassen, S.A.; Senefeld, J.W.; Senese, K.A.; Johnson, P.W.; Wiggins, C.C.; Baker, S.E.; van Helmond, N.; Bruno, K.A.; Pirofski, L.A.; Shoham, S.; et al. Convalescent Plasma Therapy for COVID-19: A Graphical Mosaic of the Worldwide Evidence. Front. Med. 2021, 8, 684151. [Google Scholar] [CrossRef]
- Ng, K.T.; Oong, X.Y.; Lim, S.H.; Chook, J.B.; Takebe, Y.; Chan, Y.F.; Chan, K.G.; Hanafi, N.S.; Pang, Y.K.; Kamarulzaman, A.; et al. Viral load and sequence analysis reveal the symptom severity, diversity, and transmission clusters of rhinovirus infections. Clin. Infect. Dis. 2018, 67, 261–268. [Google Scholar] [CrossRef] [Green Version]
- de Jong, M.D.; Simmons, C.P.; Thanh, T.T.; Hien, V.M.; Smith, G.J.; Chau, T.N.; Hoang, D.M.; Chau, N.V.; Khanh, T.H.; Dong, V.C.; et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 2006, 12, 1203–1207. [Google Scholar] [CrossRef]
- Chen, B.; Xia, R. Early experience with convalescent plasma as immunotherapy for COVID-19 in China: Knowns and unknowns. Vox Sang. 2020, 115, 507–514. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. 2020, 92, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huo, P.; Dai, R.; Lv, X.; Yuan, S.; Zhang, Y.; Guo, Y.; Li, R.; Yu, Q.; Zhu, K. Convalescent plasma may be a possible treatment for COVID-19: A systematic review. Int. Immunopharmacol. 2021, 91, 107262. [Google Scholar] [CrossRef] [PubMed]
- De Silvestro, G.; Marson, P.; La Raja, M.; Cattelan, A.M.; Guarnieri, G.; Monticelli, J.; Tiberio, I.; Vianello, A.; Gandini, G.; Gessoni, G.; et al. Veneto hospitals. outcome of SARS CoV-2 inpatients treated with convalescent plasma: One-year of data from the Veneto region (Italy) Registry. Eur. J. Intern. Med. 2021, 97, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Wright, R.S.; Fairweather, D.; Senefeld, J.W.; Bruno, K.A.; Klassen, S.A.; Carter, R.E.; Klompas, A.M.; Wiggins, C.C.; Shepherd, J.R.; et al. Early safety indicators of COVID-19 convalescent plasma in 5000 patients. J. Clin. Investig. 2020, 130, 4791–4797. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Corsini, F.; Focosi, D.; Cruciani, M. Safety and Efficacy of Convalescent Plasma in COVID-19: An Overview of Systematic Reviews. Diagnostics 2021, 11, 1663. [Google Scholar] [CrossRef]
- Klassen, S.A.; Senefeld, J.W.; Johnson, P.W.; Carter, R.E.; Wiggins, C.C.; Shoham, S.; Grossman, B.J.; Henderson, J.P.; Musser, J.; Salazar, E.; et al. The Effect of Convalescent Plasma Therapy on Mortality Among Patients With COVID-19: Systematic Review and Meta-analysis. Mayo Clin. Proc. 2021, 96, 1262–1275. [Google Scholar] [CrossRef]
- Casadevall, A.; Dragotakes, Q.; Johnson, P.W.; Senefeld, J.W.; Klassen, S.A.; Wright, R.S.; Joyner, M.J.; Paneth, N.; Carter, R.E. Convalescent plasma use in the USA was inversely correlated with COVID-19 mortality. eLife 2021, 10, e69866. [Google Scholar] [CrossRef]
- Hartmann, J.; Bloch, E.M.; Burnouf, T. Experience with COVID-19 convalescent plasma provides vital guidance to future pandemics. Transfusion 2022, 62, 681–684. [Google Scholar] [CrossRef]
- Simonovich, V.A.; Burgos Pratx, L.D.; Scibona, P.; Beruto, M.V.; Vallone, M.G.; Vazquez, C.; Savoy, N.; Guinta, D.H.; Perez, L.G.; Sanchez, M.L.; et al. A randomized trial of convalescent plasma in COVID-19 severe pneumonia. N. Engl. J. Med. 2021, 384, 619–629. [Google Scholar] [CrossRef]
- Korley, F.K.; Durkalski-Mauldin, V.; Yeatts, S.D.; Schulman, K.; Davenport, R.D.; Dumont, L.J.; El Kassar, N.; Foster, L.D.; Hah, J.M.; Jaiswal, S.; et al. Early convalescent plasma for high-risk outpatients with COVID-19. N. Engl. J. Med. 2021, 385, 1951–1960. [Google Scholar] [CrossRef]
- Recovery Collaborative Group. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): A randomised controlled, open-label, platform trial. Lancet 2021, 397, 2049–2059. [Google Scholar]
- Begin, P.; Callum, J.; Jamula, E.; Cook, R.; Heddle, N.M.; Tinmouth, A.; Zeller, M.P.; Beaudoin-Bussières, G.; Amorim, L.; Bazin, R.; et al. Convalescent plasma for hospitalized patients with COVID-19: An open-label, randomized controlled trial. Nat. Med. 2021, 27, 2012–2024. [Google Scholar] [CrossRef] [PubMed]
- Piechotta, V.; Iannizzi, C.; Chai, K.L.; Valk, S.J.; Kimber, C.; Dorando, E.; Monsef, I.; Wood, E.M.; Lamikanra, A.A.; Roberts, D.J.; et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: A living systematic review. Cochrane Database Syst. Rev. 2021, 5, CD013600. [Google Scholar] [PubMed]
- Writing Committee for the REMAP-CAP Investigators; Estcourt, L.J.; Turgeon, A.F.; McQuilten, Z.K.; McVerry, B.J.; Al-Beidh, F.; Annane, D.; Arabi, Y.M.; Arnold, D.M.; Beane, A.; et al. Effect of convalescent plasma on organ support-free days in critically ill patients with COVID-19: A randomized clinical trial. JAMA 2021, 326, 1690–1702. [Google Scholar] [PubMed]
- Franchini, M.; Mengoli, C.; Caruso, B.; Petilino, R.; Ballotari, A.; Glingani, C. Measuring accuracy of the neutralizing activity of COVID-19 convalescent plasma. Clin. Chem. Lab. Med. 2021, 60, e4–e6. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.A.; Henderson, J.P.; Shah, P.K.; Rubinstein, S.M.; Joyner, M.J.; Choueiri, T.K.; Flora, D.B.; Griffiths, E.A.; Gulati, A.P.; Hwang, C.; et al. COVID-19 and Cancer Consortium. Association of Convalescent Plasma Therapy With Survival in Patients With Hematologic Cancers and COVID-19. JAMA Oncol. 2021, 7, 1167–1175. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Klassen, S.A.; Ford, S.K.; Senese, K.A.; Wiggins, C.C.; Bostrom, B.C.; Thompson, M.A.; Baker, S.E.; Nicholson, W.T.; Johnson, P.W.; et al. Use of convalescent plasma in COVID-19 patients with immunosuppression. Transfusion 2021, 61, 2503–2511. [Google Scholar] [CrossRef]
- Fung, M.; Nambiar, A.; Pandey, S.; Fung, M.; Nambiar, A.; Pandey, S.; Aldrich, J.M.; Teraoka, J.; Freise, C.; Roberts, J.; et al. Treatment of immunocompromised COVID-19 patients with convalescent plasma. Transpl. Infect. Dis. 2021, 23, e13477. [Google Scholar] [CrossRef]
- Betrains, A.; Godinas, L.; Woei-A-Jin, F.J.S.H.; Rosseels, W.; Van Herck, Y.; Lorent, N.; Dierickx, D.; Compernolle, V.; Meyfroidt, G.; Vanderbeke, L.; et al. Convalescent plasma treatment of persistent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in patients with lymphoma with impaired humoral immunity and lack of neutralising antibodies. Br. J. Haematol. 2021, 192, 1100–1105. [Google Scholar] [CrossRef]
- Rodionov, R.N.; Biener, A.; Spieth, P.; Achleitner, M.; Hölig, K.; Aringer, M.; Mingrone, G.; Corman, V.M.; Drosten, C.; Bornstein, S.R.; et al. Potential benefit of convalescent plasma transfusions in immunocompromised patients with COVID-19. Lancet Microbe 2021, 2, e138. [Google Scholar] [CrossRef]
- Franchini, M.; Glingani, C.; Morandi, M.; Corghi, G.; Cerzosimo, S.; Beduzzi, G.; Storti, A.; Di Stasi, V.; Rastrelli, G.; Vignozzi, L.; et al. Safety and efficacy of convalescent plasma in elderly COVID-19 patients: The RESCUE trial. Mayo Clin. Proc. Innov. Qual. Outcomes 2021, 5, 403–412. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gebo, K.A.; Shoham, S.; Bloch, E.M.; Lau, B.; Shenoy, A.G.; Mosnaim, G.S.; Gniadek, T.J.; Fukuta, Y.; Patel, B.; et al. Early Outpatient Treatment for Covid-19 with Convalescent Plasma. N. Engl. J. Med. 2022, 386, 1700–1711. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Solá, C.; Ramos-Martínez, A.; Muñez-Rubio, E.; Ruiz-Antorán, B.; Malo de Molina, R.; Torres, F.; Fernández-Cruz, A.; Calderón-Parra, J.; Payares-Herrera, C.; Díaz de Santiago, A.; et al. Convalescent plasma for COVID-19: A multicenter, randomized clinical trial. J. Clin. Investig. 2021, 131, e152740. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Cruciani, M. How safe is COVID-19 convalescent plasma? Mayo Clin. Proc. 2021, 96, 2279–2281. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Bruno, K.A.; Klassen, S.A.; Kunze, K.L.; Johnson, P.W.; Lesser, E.R.; Wiggins, C.C.; Senefeld, J.W.; Klompas, A.M.; Hodge, D.O.; et al. Safety update: COVID-19 convalescent plasma in 20,000 hospitalized patients. Mayo Clin. Proc. 2020, 95, 1888–1897. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Johnson, P.W.; Kunze, K.L.; Bloch, E.M.; van Helmond, N.; Golafshar, M.A.; Klassen, S.A.; Klompas, A.M.; Sexton, M.A.; Diaz Soto, J.C.; et al. Access to and safety of COVID-19 convalescent plasma in the United States expanded access program: A national registry study. PLoS Med. 2021, 18, e1003872. [Google Scholar] [CrossRef] [PubMed]
- Rahimi-Levene, N.; Shapira, J.; Tzur, I.; Shiloah, E.; Peer, V.; Levin, E.; Izak, M.; Shinar, E.; Ziv-Baran, T.; Weinberger, M.; et al. Predictors of mortality in COVID-19 patients treated with convalescent plasma therapy. PLoS ONE 2022, 17, e0271036. [Google Scholar] [CrossRef] [PubMed]
- Elnour, A.A.; Don, J.; Yousif, I.; Gnana, K.; Abdi, S.; Alhajri, N.; Al Amoodi, A.; Fathelrahman, A.I.; Mohammed Magboul, S.; Mohamed, S.; et al. The early mortality rate of people infected with coronavirus (COVID-2019) in Wuhan, China: Review of three retrospective studies. J. Pharm. Bioallied Sci. 2020, 12, 223–233. [Google Scholar] [CrossRef]
- Xie, J.; Tong, Z.; Guan, X.; Du, B.; Qiu, H. Clinical Characteristics of Patients Who Died of Coronavirus Disease 2019 in China. JAMA Netw. Open 2020, 3, e205619. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Bloch, E.M.; Pirenne, F.; Al-Riyami, A.Z.; Crowe, E.; Dau, L.; Land, K.; Townsend, M.; Jecko, T.; Rahimi-Levene, N.; et al. ISBT COVID-19 Working Group. ABO blood group and COVID-19: A review on behalf of the ISBT COVID-19 Working Group. Vox Sang 2021, 116, 849–861. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, T.; Ma, L.; Zhang, H.; Wang, H.; Wei, W.; Pei, H.; Li, H. The impact of ABO blood group on COVID-19 infection risk and mortality: A systematic review and meta-analysis. Blood Rev. 2021, 48, 100785. [Google Scholar] [CrossRef]
- Ray, J.G.; Schull, M.J.; Vermeulen, M.J.; Park, A.L. Association Between ABO and Rh Blood Groups and SARS-CoV-2 Infection or Severe COVID-19 Illness: A Population-Based Cohort Study. Ann. Intern. Med. 2021, 174, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Tarpey, T.; Liu, M.; Goldfeld, K.; Wu, Y.; Wu, D.; Li, Y.; Zhang, J.; Ganguly, D.; Ray, Y.; et al. Development and Validation of a Treatment Benefit Index to Identify Hospitalized Patients with COVID-19 Who May Benefit From Convalescent Plasma. JAMA Netw. Open 2022, 5, e2147375. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Franchini, M.; Joyner, M.J.; Casadevall, A. Are convalescent plasma stocks collected during former COVID-19 waves still effective against current SARS-CoV-2 variants? Vox Sang 2022, 117, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Franchini, M.; Joyner, M.J.; Casadevall, A.; Sullivan, D.J. Analysis of anti-Omicron neutralizing antibody titers in different convalescent plasma sources. medRxiv 2021. [Google Scholar] [CrossRef]
- Focosi, D.; McConnell, S.; Casadevall, A.; Cappello, E.; Valdiserra, G.; Tuccori, M. Monoclonal antibody therapies against SARS-CoV-2. Lancet Infect. Dis. 2022, S1473-3099(22)00311-5. [Google Scholar] [CrossRef]
- Estcourt, L.; Cohn, C.S.; Pagano, M.B.; Iannizzi, C.; Kreuzberger, N.; Skoetz, N.; Allen, E.S.; Bloch, E.M.; Beaudoin, G.; Casadevall, A.; et al. Clinical Practice Guidelines From the Association for the Advancement of Blood and Biotherapies (AABB): COVID-19 Convalescent Plasma. Ann. Intern. Med. 2022, 175, 1310–1321. [Google Scholar] [CrossRef] [PubMed]
- FDA. Convalescent Plasma EUA Letter of Authorization. 28 December 2021. Available online: https://www.fda.gov/media/141477/download (accessed on 26 August 2022).
- Sullivan, D.J.; Focosi, D.; Hanley, D.; Franchini, M.; Ou, J.; Casadevall, A.; Paneth, N. Effective antiviral regimens to reduce COVID-19 hospitalizations: A systematic comparison of randomized controlled trials. medRxiv 2022. [Google Scholar] [CrossRef]
Patients | Number | % | Number | % | Number | % | Number | % |
---|---|---|---|---|---|---|---|---|
WHO Disease Progression Scores—before CCP transfusion | 3 | 4 | 5 | Whole investigated group (all scores) | ||||
Patients | 65 | 34.4 | 65 | 34.4 | 59 | 31.2 | 189 | 100 |
Ethnicity | ||||||||
Others | 4 | 6.2 | 6 | 9.2 | 4 | 6.8 | 14 | 7.4 |
Macedonians | 45 | 69.2 | 53 | 81.5 | 41 | 69.5 | 139 | 73.5 |
Albanians | 16 | 24.6 | 6 | 9.2 | 14 | 23.7 | 36 | 19.1 |
Gender | ||||||||
Male | 52 | 80.0 | 48 | 73.8 | 48 | 81.4 | 148 | 78.3 |
Female | 13 | 20.0 | 17 | 26.2 | 11 | 18.6 | 41 | 21.7 |
BMI | ||||||||
18.5–24.9 (normal) | 14 | 21.6 | 11 | 16.9 | 12 | 20.3 | 37 | 19.6 |
25–29.9 (overweight) | 37 | 56.9 | 34 | 52.3 | 24 | 40.7 | 95 | 50.3 |
≥30.0 (obese) | 14 | 21.5 | 20 | 30.8 | 23 | 39.0 | 57 | 30.1 |
Blood Group | ||||||||
B | 14 | 21.5 | 11 | 16.9 | 7 | 11.9 | 32 | 16.9 |
A | 26 | 40.0 | 33 | 50.8 | 35 | 59.3 | 94 | 49.7 |
O | 20 | 30.7 | 15 | 23.1 | 12 | 20.3 | 47 | 24.9 |
AB | 5 | 7.7 | 6 | 9.2 | 5 | 8.5 | 16 | 8.5 |
Comorbidities | ||||||||
No | 28 | 43.1 | 16 | 24.6 | 11 | 18.6 | 55 | 29.1 |
Yes | 37 | 56.9 | 49 | 75.4 | 48 | 81.4 | 134 | 70.9 |
RhD factor | ||||||||
Negative | 8 | 12.3 | 5 | 7.7 | 5 | 8.5 | 18 | 9.5 |
Positive | 57 | 87.7 | 60 | 92.3 | 54 | 91.5 | 171 | 90.5 |
Age | ||||||||
<35 | 7 | 10.8 | 2 | 3.1 | 2 | 3.4 | 11 | 5.8 |
36–45 | 6 | 9.2 | 8 | 12.3 | 9 | 15.3 | 23 | 12.2 |
46–55 | 20 | 30.8 | 15 | 23.1 | 12 | 20.3 | 47 | 24.9 |
56–65 | 22 | 33.8 | 19 | 29.2 | 15 | 25.4 | 56 | 29.6 |
66–75 | 7 | 10.8 | 18 | 27.7 | 16 | 27.1 | 41 | 21.7 |
>75 | 3 | 4.6 | 3 | 4.6 | 5 | 8.5 | 11 | 5.8 |
Comorbidities | Number of Patients | N = 134% |
---|---|---|
HTA (hypertension) | 74 | 55.2 |
DM (diabetes mellitus) | 34 | 25.4 |
Obesity | 53 | 39.6 |
CVD (cardiovascular diseases) (other than HTA), such as AFF, tachycardia, aneurism, stenting | 23 | 17.2 |
Hypothyroidism | 8 | 6.0 |
CRD (chronic respiratory disease)—HOBB, asthma, etc. | 12 | 9.0 |
St. post carcinoma | 3 | 2.2 |
BHP (benign hyperplasio of prostate) | 3 | 2.2 |
CVD (cerebrovascular disease—St. post CVI and others) | 3 | 2.2 |
Psychiatric disease (anxiodepresive syndrome, depressive syndrome, schizophrenia) | 7 | 5.2 |
Psoriasis (psoriatic rheumatoid arthritis) | 3 | 2.2 |
Thrombocytopenia | 3 | 2.2 |
CRI (chronic renal insufficiency) | 2 | 1.5 |
GIT (gastrointestinal diseases—St. post ulcus bulbi duodeni, cholecystectomy, Morbus Gilber) | 5 | 2.6 |
Neurological diseases (Parkinson, epilepsy) | 3 | 2.2 |
Hepatitis B | 2 | 1.5 |
Gout | 3 | 2.2 |
Macrocytic anemia | 1 | 0.7 |
Entire Cohort | WHO Score 3 | WHO Score 4 | WHO Score 5 | ANOVA Differences between Groups | |
---|---|---|---|---|---|
Duration of oxygenation support after CCP transfusion (days) (mean ± standard deviation) | 7.4 ± 5.1 | not oxygenated | 5.4 ± 3.5 | 9.4 ± 5.8 | n.a. |
Total length of hospital stay after CCP transfusion (days) (mean ± standard deviation) | 11.0 ± 5.2 | 8.6 ± 2.7 | 11.1 ± 4.7 | 13.6 ± 6.7 | p < 0.05 |
ICU admissions | 1 | 0 | 0 | 1 | n.a. |
Number | % | |
---|---|---|
Overall number of participants analyzed | 189 | 100 |
Nasal cannula, oxygen mask before CCP transfusion | 65 | 34.4 |
Nasal cannula, oxygen mask 24 h after CCP transfusion | 56 | 29.6 |
Nasal cannula, oxygen mask 7 days after CCP transfusion | 35 | 18.5 |
Non-invasive ventilation, high flow nasal cannula before CCP transfusion | 59 | 31.2 |
Non-invasive ventilation, high flow nasal cannula 24 h after CCP transfusion | 56 | 29.6 |
Non-invasive ventilation, high flow nasal cannula 7 days after CCP transfusion | 25 | 13.2 |
Intubation or invasive mechanical ventilation before CCP transfusion | 0 | 0 |
Intubation or invasive mechanical ventilation 24 h after CCP transfusion | 1 | 0.5 |
Intubation or invasive mechanical ventilation 7 days after CCP transfusion | 1 | 0.5 |
Rescue ventilation before CCP transfusion | 0 | 0 |
Rescue ventilation 24 h after CCP transfusion | 0 | 0 |
Rescue ventilation 7 days after CCP transfusion | 1 | 0.5 |
WHO Disease Progression Scores before CCP Transfusion | Number | % |
---|---|---|
WHO score 3—Hospitalized, without oxygen support—moderate disease | 65 | 34.4 |
WHO score 4—Hospitalized, oxygen by mask or nasal prongs—moderate disease | 65 | 34.4 |
WHO score 5—Hospitalized, non-invasive ventilation (NIV) or high-flow oxygen (HFO)—severe disease | 59 | 31.2 |
WHO scores 24 h after CCP transfusion | ||
WHO score 3—Hospitalized, without oxygen support—moderate disease | 76 | 40.2 |
WHO score 4—Hospitalized, oxygen by mask or nasal prongs—moderate disease | 56 | 29.1 |
WHO score 5—Hospitalized, non-invasive ventilation (NIV) or high-flow oxygen (HFO)—severe disease | 56 | 29.1 |
WHO score 6—Hospitalized, intubation and mechanical ventilation—severe disease | 1 | 0.5 |
WHO scores 7 days after CCP transfusion | ||
WHO score 3—Hospitalized, without oxygen support—moderate disease | 103 | 54.5 |
WHO score 4—Hospitalized, oxygen by mask or nasal prongs—moderate disease | 35 | 18.5 |
WHO score 5—Hospitalized, non-invasive ventilation (NIV) or high-flow oxygen (HFO)—severe disease | 25 | 13.2 |
WHO score 6—Hospitalized, intubation and mechanical ventilation—severe disease | 1 | 0.5 |
WHO score 7—Ventilation + additional organ support—pressors, RRT, ECMO—severe disease | 1 | 0.5 |
WHO score 8—Dead | 1 | 0.5 |
WHO scores 14 days after CCP transfusion | ||
WHO score 3—Hospitalized, without oxygen support—moderate disease | 36 | 19.0 |
WHO score 4—Hospitalized, oxygen by mask or nasal prongs—moderate disease | 11 | 5.8 |
WHO score 5—Hospitalized, non-invasive ventilation (NIV) or high-flow oxygen (HFO)—severe disease | 6 | 3.2 |
WHO scores 21 days after CCP transfusion | ||
WHO score 3—Hospitalized, without oxygen support—moderate disease | 7 | 3.7 |
WHO score 5—Hospitalized, non-invasive ventilation (NIV) or high-flow oxygen (HFO)—severe disease | 1 | 0.5 |
WHO scores 28 days after CCP transfusion | ||
0 | ||
WHO scores at hospital discharge | ||
WHO score 0—no clinical or virological evidence of infection—uninfected | 51 | 27.0 |
WHO score 1—no limitations in activities—ambulatory | 113 | 59.8 |
WHO score 2—limitation of activities—ambulatory | 3 | 1.6 |
WHO score 8—dead | 22 | 11.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grubovic Rastvorceva, R.M.; Useini, S.; Stevanovic, M.; Demiri, I.; Petkovic, E.; Franchini, M.; Focosi, D. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients—An Open-Label Phase II Clinical Trial. Life 2022, 12, 1565. https://doi.org/10.3390/life12101565
Grubovic Rastvorceva RM, Useini S, Stevanovic M, Demiri I, Petkovic E, Franchini M, Focosi D. Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients—An Open-Label Phase II Clinical Trial. Life. 2022; 12(10):1565. https://doi.org/10.3390/life12101565
Chicago/Turabian StyleGrubovic Rastvorceva, Rada M., Sedula Useini, Milena Stevanovic, Ilir Demiri, Elena Petkovic, Massimo Franchini, and Daniele Focosi. 2022. "Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients—An Open-Label Phase II Clinical Trial" Life 12, no. 10: 1565. https://doi.org/10.3390/life12101565
APA StyleGrubovic Rastvorceva, R. M., Useini, S., Stevanovic, M., Demiri, I., Petkovic, E., Franchini, M., & Focosi, D. (2022). Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients—An Open-Label Phase II Clinical Trial. Life, 12(10), 1565. https://doi.org/10.3390/life12101565