Metabolic Changes in SARS-CoV-2 Infection: Clinical Data and Molecular Hypothesis to Explain Alterations of Lipid Profile and Thyroid Function Observed in COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef]
- Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286. [Google Scholar] [CrossRef] [Green Version]
- D’Ardes, D.; Pontolillo, M.; Esposito, L.; Masciarelli, M.; Boccatonda, A.; Rossi, I.; Bucci, M.; Guagnano, M.T.; Ucciferri, C.; Santilli, F.; et al. Duration of COVID-19: Data from an Italian Cohort and Potential Role for Steroids. Microorganisms 2020, 8, 1327. [Google Scholar] [CrossRef] [PubMed]
- D’Ardes, D.; Boccatonda, A.; Rossi, I.; Pontolillo, M.; Cocco, G.; Schiavone, C.; Santilli, F.; Guagnano, M.T.; Bucci, M.; Cipollone, F. Long-term Positivity to SARS-CoV-2: A Clinical Case of COVID-19 with Persistent Evidence of Infection. Eur. J. Case Rep. Intern. Med. 2020, 7, 001707. [Google Scholar] [PubMed]
- Fan, J.; Wang, H.; Ye, G.; Cao, X.; Xu, X.; Tan, W.; Zhang, Y. Low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019. J. Metabol. 2020, 107, 154243. [Google Scholar] [CrossRef]
- Wei, X.; Zeng, W.; Su, J.; Wan, H.; Yu, X.; Cao, X.; Tan, W.; Wang, H. Hypolipidemia is associated with the severity of COVID-19. J. Clin. Lipidol. 2020, 14, 297–304. [Google Scholar] [CrossRef]
- Hu, X.; Chen, D.; Wu, L.; He, G.; Ye, W. Declined serum high density lipoprotein cholesterol is associated with the severity of COVID-19 infection. Clin. Chim. Acta 2020, 510, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Khoo, B.; Tan, T.; Clarke, S.A.; Mills, E.G.; Patel, B.; Modi, M.; Phylactou, M.; Eng, P.C.; Thurston, L.; Alexander, E.C.; et al. Thyroid Function Before, During, and After COVID-19. J. Clin. Endocrinol. Metab. 2021, 106, e803–e811. [Google Scholar] [CrossRef] [PubMed]
- Scappaticcio, L.; Pitoia, F.; Esposito, K.; Piccardo, A.; Trimboli, P. Impact of COVID-19 on the thyroid gland: An update. Rev. Endocr. Metab. Disord. 2020, 1–13. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical Management of COVID-19: Living Guidance, 25 January 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-1 (accessed on 5 February 2021).
- Dias, S.S.G.; Soares, V.C.; Ferreira, A.C.; Sacramento, C.Q.; Fintelman-Rodrigues, N.; Temerozo, J.R.; Teixeira, L.; Nunes da Silva, M.A.; Barreto, E.; Mattos, M.; et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog. 2020, 16, e1009127. [Google Scholar] [CrossRef]
- Abu-Farha, M.; Thanaraj, T.A.; Qaddoumi, M.G.; Hashem, A.; Abubaker, J.; Al-Mulla, F. The Role of Lipid Metabolism in COVID-19 Virus Infection and as a Drug Target. Int. J. Mol. Sci. 2020, 21, 3544. [Google Scholar] [CrossRef]
- Filippas-Ntekouan, S.; Liberopoulos, E.; Elisaf, M. Lipid testing in infectious diseases: Possible role in diagnosis and prognosis. Infection 2017, 45, 575–588. [Google Scholar] [CrossRef]
- El-Sadr, W.M.; Mullin, C.M.; Carr, A.; Gibert, C.; Rappoport, C.; Visnegarwala, F.; Grunfeld, C.; Raghavan, S.S. Effects of HIV disease on lipid, glucose and insulin levels: Results from a large antiretroviral-naive cohort. HIV Med. 2005, 6, 114–121. [Google Scholar] [CrossRef]
- Funderburg, N.T.; Mehta, N.N. Lipid Abnormalities and Inflammation in HIV inflection. Curr. HIV/AIDS Rep. 2016, 13, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zidar, D.A.; Juchnowski, S.; Ferrari, B.; Clagett, B.; Pilch-Cooper, H.A.; Rose, S.; Rodriguez, B.; McComsey, G.A.; Sieg, S.F.; Mehta, N.N.; et al. Oxidized LDL Levels Are Increased in HIV Infection and May Drive Monocyte Activation. J. Acquir. Immune Defic. Syndr. 2015, 69, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Light, R.W.; Macgregor, M.I.; Luchsinger, P.C.; Ball, W.C., Jr. Pleural effusions: The diagnostic separation of transudates and exudates. Ann. Intern. Med. 1972, 77, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lépine, P.A.; Thomas, R.; Nguyen, S.; Lacasse, Y.; Cheah, H.M.; Creaney, J.; Muruganandan, S.; Martel, S.; Lee, Y.C.G.; Delage, A. Simplified Criteria Using Pleural Fluid Cholesterol and Lactate Dehydrogenase to Distinguish between Exudative and Transudative Pleural Effusions. Respiration 2019, 98, 48–54. [Google Scholar] [CrossRef]
- Hamal, A.B.; Yogi, K.N.; Bam, N.; Das, S.K.; Karn, R. Pleural fluid cholesterol in differentiating exudative and transudative pleural effusion. Pulm. Med. 2013, 2013, 135036. [Google Scholar] [CrossRef]
- Hwang, D.M.; Chamberlain, D.W.; Poutanen, S.M.; Low, D.E.; Asa, S.L.; Butany, J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol. 2005, 18, 1–10. [Google Scholar] [CrossRef]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Deigendesch, H.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; Bassetti, S.; et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020, 77, 198–209. [Google Scholar] [CrossRef]
- Kuiken, T.; Fouchier, R.A.; Schutten, M.; Rimmelzwaan, G.F.; van Amerongen, G.; van Riel, D.; Laman, J.D.; de Jong, T.; van Doornum, G.; Lim, W.; et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 2003, 362, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Lei, J.; Lei, H.; Ruan, X.; Liu, Q.; Chen, Y.; Huang, W. MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. Exp. Cell. Res. 2015, 336, 33–42. [Google Scholar] [CrossRef]
- Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yuan, Z.; Pavel, M.A.; Hansen, S.B. The role of high cholesterol in age-related COVID19 lethality. bioRxiv. [CrossRef]
- Lee, W.; Ahn, H.J.; Park, H.H.; Kim, H.N.; Kim, H.; Yoo, Y.; Shin, H.; Hong, K.S.; Jang, J.G.; Park, C.G.; et al. COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct. Target. Ther. 2020, 5, 186. [Google Scholar] [CrossRef] [PubMed]
- D’Ardes, D.; Boccatonda, A.; Rossi, I.; Guagnano, M.T.; Santilli, F.; Cipollone, F.; Bucci, M. COVID-19 and RAS: Unravelling an Unclear Relationship. Int. J. Mol. Sci. 2020, 21, 3003. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Li, L.; Zhang, Y.; Wang, X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, C.J.; Bridge, A.; Le Mercier, P. A potential role for integrins in host cell entry by SARS-CoV-2. Antivir. Res. 2020, 177, 104759. [Google Scholar] [CrossRef]
- Davis, P.J.; Lin, H.Y.; Hercbergs, A.; Keating, K.A.; Mousa, S.A. Coronaviruses and integrin αvβ3: Does thyroid hormone modify the relationship? Endocr. Res. 2020, 45, 210–215. [Google Scholar] [CrossRef]
- Lania, A.; Sandri, M.T.; Cellini, M.; Mirani, M.; Lavezzi, E.; Mazziotti, G. Thyrotoxicosis in patients with COVID-19: The THYRCOV study. Eur. J. Endocrinol. 2020, 183, 381–387. [Google Scholar] [CrossRef] [PubMed]
General and Clinical Characteristics of Patients | |||||
---|---|---|---|---|---|
Characteristics | All Patients (118) | Patients with Pre-Admission Lipid Profile (53) | Patient without Pre-Admission Lipid Profile (65) | Patients with Pre-Admission TSH (45) | Patients without Pre- Admission TSH (73) |
Median ± Standard Deviation | |||||
Age (years) | 72.95 ± 17.26 | 70.00 ± 13.77 | 68.83 ± 18.78 | 75.29 ± 16.69 | 71.51 ± 17.56 |
Days of hospitalization | 19.19 ± 11.68 | 17.43 ± 11.23 | 20.62 ± 11.93 | 18.04 ± 12.51 | 19.89 ± 11.17 |
Characteristics | Patients Number (percentage) | ||||
Sex | |||||
Male | 64 (54.2) | 31 (58.5) | 33 (50.8) | 21 (46.7) | 43 (58.9) |
Female | 54 (45.8) | 22 (41.5) | 32 (49.2) | 24 (53.3) | 30 (41.1) |
Comorbidities | |||||
COPD | 12 (10.2) | 8 (15.1) | 4 (6.2) | 6 (13.3) | 6 (8.2) |
Diabetes mellitus | 14 (11.9) | 10 (18.9) | 4 (6.2) | 7 (15.6) | 7 (9.6) |
Obesity | 8 (6.8) | 4 (7.5) | 4 (6.2) | 5 (11.1) | 3 (4.1) |
Hypertension | 70 (59.3) | 37 (69.8) | 33 (50.8) | 31 (70.5) | 39 (53.4) |
Dyslipidemia | 21 (17.8) | 14 (26.4) | 7 (10.8) | 9 (20.0) | 12 (16.4) |
Thyroid disease | 12 (10.2) | 4 (7.5) | 8 (12.3) | 7 (15.6) | 5 (6.8) |
Paroxysmal Atrial fibrillation | 7 (5.9) | 3 (5.7) | 4 (6.2) | 4 (8.9) | 3 (4.1) |
Chronic atrial fibrillation | 16 (13.6) | 8 (15.1) | 8 (12.3) | 8 (17.8) | 8 (11.0) |
Heart failure | 34 (28.8) | 21(39.6) | 13 (20.0) | 18 (40.0) | 16 (21.9) |
Ischemic heart disease | 21 (17.8) | 16 (30.2) | 5 (7.7) | 12 (26.7) | 9 (12.3) |
Active cancer | 5 (4.2) | 3 (5.7) | 2 (3.1) | 4 (8.9) | 1 (1.4) |
Previous cancer | 11 (9.3) | 7 (13.2) | 4 (6.2) | 5 (11.1) | 6 (8.2) |
Therapies | |||||
Lipid lowering therapy | 12 (10.2) | 7 (13.2) | 5 (7.7) | 5 (11.1) | 7 (9.6) |
Therapy for thyroid disease | 9 (7.6) | 4 (7.5) | 5 (7.7) | 5 (11.1) | 4 (5.5) |
COVID-19 Symptoms and Outcome | |||||
Fever | 92 (78%) | 40 (75.5) | 52 (80) | 33 (73.3) | 59 (80.8) |
Dyspnea | 51 (44.3) | 23 (43.4) | 28 (43.1) | 21 (50.0) | 30 (41.1) |
Desaturation | 55 (46.6) | 24 (45.3) | 31 (47.7) | 20 (44.4) | 35 (47.9) |
Death | 26 (22) | 17 (32.1) | 9 (13.9) | 14 (31.1) | 12 (16.4) |
Severity | |||||
Asymptomatic | 0 | 0 | 0 | 0 | 0 |
Mild symptoms | 4 (3.4) | 2 (3.8) | 2 (3.1) | 3 (6.7) | 1 (1.4) |
Mild pneumonia | 71 (60.2) | 25 (47.2) | 46 (70.8) | 23 (51.1) | 48 (85.8) |
Severe pneumonia | 42 (35.6) | 26 (49.1) | 16 (24.6) | 19 (42.2) | 23 (31.5) |
ARDS | 1 (0.8) | 0 | 1 (1.5) | 0 | 1 (1.4) |
Before SARS-CoV-2 Infection mg/dL (IQR mg/dL) | On Admission for COVID-19 mg/dL (IQR mg/dL) | p-Value | |
---|---|---|---|
Total cholesterol | 158.43 ± 45.18 (122.00–191.00) | 136.89 ± 42.73 (109.50–157.50) | 0.001 |
LDL-C | 90.16 ± 34.44 (61.80–114.30) | 81.53 ± 30.35 (57.90–98.90) | 0.101 |
HDL-C | 44.08 ± 17.76 (31.00–58.00) | 32.36 ± 15.13 (23.00–34.50) | 0.000 |
TG | 121.00 ± 59.09 (83.50–147.50) | 115.00 ± 40.45 (85.50–139.00) | 0.378 |
non-HDL-C | 114.36 ± 39.30 (82.50–142.00) | 104.53 ± 32.63 (77.00–123.00) | 0.060 |
Before SARS-CoV-2 Infection mg/dL (IQR mg/dL) | On Admission for COVID-19 mg/dL (IQR mg/dL) | p value | |
---|---|---|---|
TSH | 1.67 ± 1.67 (IQR: 1.23–2.09) | 1.15 ± 1.08 (IQR: 0.52–1.29) | 0.014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ardes, D.; Rossi, I.; Bucciarelli, B.; Allegra, M.; Bianco, F.; Sinjari, B.; Marchioni, M.; Di Nicola, M.; Santilli, F.; Guagnano, M.T.; et al. Metabolic Changes in SARS-CoV-2 Infection: Clinical Data and Molecular Hypothesis to Explain Alterations of Lipid Profile and Thyroid Function Observed in COVID-19 Patients. Life 2021, 11, 860. https://doi.org/10.3390/life11080860
D’Ardes D, Rossi I, Bucciarelli B, Allegra M, Bianco F, Sinjari B, Marchioni M, Di Nicola M, Santilli F, Guagnano MT, et al. Metabolic Changes in SARS-CoV-2 Infection: Clinical Data and Molecular Hypothesis to Explain Alterations of Lipid Profile and Thyroid Function Observed in COVID-19 Patients. Life. 2021; 11(8):860. https://doi.org/10.3390/life11080860
Chicago/Turabian StyleD’Ardes, Damiano, Ilaria Rossi, Benedetta Bucciarelli, Marco Allegra, Francesco Bianco, Bruna Sinjari, Michele Marchioni, Marta Di Nicola, Francesca Santilli, Maria Teresa Guagnano, and et al. 2021. "Metabolic Changes in SARS-CoV-2 Infection: Clinical Data and Molecular Hypothesis to Explain Alterations of Lipid Profile and Thyroid Function Observed in COVID-19 Patients" Life 11, no. 8: 860. https://doi.org/10.3390/life11080860
APA StyleD’Ardes, D., Rossi, I., Bucciarelli, B., Allegra, M., Bianco, F., Sinjari, B., Marchioni, M., Di Nicola, M., Santilli, F., Guagnano, M. T., Cipollone, F., & Bucci, M. (2021). Metabolic Changes in SARS-CoV-2 Infection: Clinical Data and Molecular Hypothesis to Explain Alterations of Lipid Profile and Thyroid Function Observed in COVID-19 Patients. Life, 11(8), 860. https://doi.org/10.3390/life11080860