Contribution of Antigen-Processing Machinery Genetic Polymorphisms to Atopic Dermatitis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieber, T. Atopic dermatitis. Ann. Dermatol. 2010, 22, 125–137. [Google Scholar] [CrossRef]
- Nutten, S. Atopic dermatitis: Global epidemiology and risk factors. Ann. Nutr. Metab. 2015, 66 (Suppl. S1), 8–16. [Google Scholar] [CrossRef]
- Kapur, S.; Watson, W.; Carr, S. Atopic dermatitis. Allergy Asthma Clin. Immunol. 2018, 12–52. [Google Scholar] [CrossRef]
- Turner, J.D.; Schwartz, R.A. Atopic dermatitis. A clinical challenge. Acta Dermatovenerol. Alpina Pannonica Adriatica 2006, 15, 59–68. [Google Scholar]
- Thomsen, S.F. Epidemiology and natural history of atopic diseases. Eur. Clin. Respir. J. 2015, 24, 2. [Google Scholar] [CrossRef] [PubMed]
- Portelli, M.A.; Hodge, E.; Sayers, I. Genetic risk factors for the development of allergic disease identified by genome-wide association. Clin. Exp. Allergy 2015, 45, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Hirota, T.; Takahashi, A.; Kubo, M.; Tsunoda, T.; Tomita, K.; Sakashita, M.; Yamada, T.; Fujieda, S.; Tanaka, S.; Doi, S.; et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat. Genet. 2012, 44, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Weidinger, S.; Willis-Owen, S.A.G.; Kamatani, Y.; Baurecht, H.; Morar, N.; Liang, L.; Edser, P.; Street, T.; Rodriguez, E.; M. O’Regan, G.M.; et al. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum. Mol. Genet. 2013, 22, 4841–4856. [Google Scholar] [CrossRef]
- Yatagai, Y.; Sakamoto, T.; Masuko, H.; Kaneko, Y.; Yamada, H.; Iijima, H.; Naito, T.; Noguchi, E.; Hirota, T.; Tamari, M.; et al. Genome-Wide Association Study for Levels of Total Serum IgE Identifies HLA-C in a Japanese Population. PLoS ONE 2013, 8, e80941. [Google Scholar]
- Takejima, P.; Agondi, R.C.; Rodrigues, H.; Aun, M.V.; Kalil, J.; Giavina-Bianchi, P. Allergic and nonallergic asthma have distinct phenotypic and genotypic features. Int. Arch. Allergy Immunol. 2017, 172, 150–160. [Google Scholar] [CrossRef]
- Niepiekło-Miniewska, W.; Mpakali, A.; Stratikos, E.; Matusiak, Ł.; Narbutt, J.; Lesiak, A.; Kuna, P.; Wilczyńska, K.; Nowak, I.; Wiśniewski, A.; et al. Endoplasmic reticulum aminopeptidase 1 polymorphism Ile276Met is associated with atopic dermatitis and affects the generation of an HLA-C associated antigenic epitope in vitro. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 906–911. [Google Scholar] [CrossRef]
- Roesner, L.M.; Heratizadeh, A.; Wieschowski, S.; Mittermann, I.; Valenta, R.; Eiz-Vesper, B.; Hennig, C.; Hansen, G.; Christine, S.; Falk, C.S.; et al. α-NAC–specific autoreactive CD8+ T cells in atopic dermatitis are of an effector memory type and secrete IL-4 and IFN-γ. J. Immunol. 2016, 196, 3245–3252. [Google Scholar] [CrossRef]
- Trowitsch, S.; Tampé, R. Multifunctional chaperone and quality control complexes in adaptive immunity. Annu. Rev. Biophys. 2020, 49, 135–161. [Google Scholar] [CrossRef]
- Yewdel, J.W.; Dersh, D.; Fahraeus, R. Peptide channeling: The key to MHC class I immunosurveillance? Trends Cell Biol. 2019, 29, 929–939. [Google Scholar] [CrossRef]
- Kelly, A.; Trowsdale, J. Genetics of antigen processing and presentation. Immunogenetics 2019, 71, 161–170. [Google Scholar] [CrossRef]
- Kucuksezer, U.C.; Cetin, E.A.; Esen, F.; Tahrali, I.; Akdeniz, N.; Gelmez, M.Y.; Deniz, G. The role of natural killer cells in autoimmune diseases. Front. Immunol. 2021, 12, 622306. [Google Scholar] [CrossRef]
- Gianchecchi, E.; Delfino, D.V.; Fierabracci, A. Natural Killer cells: Potential biomarkers and therapeutic target in autoimmune diseases? Front. Immunol. 2021, 12, 616853. [Google Scholar] [CrossRef]
- Niepiekło-Miniewska, W.; Majorczyk, E.; Matusiak, L.; Gendzekhadze, K.; Nowak, I.; Narbutt, J.; Lesiak, A.; Kuna, P.; Ponińska, J.; Pietkiewicz-Sworowska, A.; et al. Protective effect of the KIR2DS1 gene in atopic dermatitis. Gene 2013, 527, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Niepiekło-Miniewska, W.; Matusiak, Ł.; Narbutt, J.; Lesiak, A.; Kuna, P.; Wiśniewski, A.; Piekarska, K.; Nowak, I.; Kuśnierczyk, P. Synergy of endoplasmic reticulum aminopeptidase 1 and 2 (ERAP1 and ERAP2) polymorphisms in atopic dermatitis: Effects on disease prevalence. Hum. Immunol. 2021, 82, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J.M.; Rajka, G. Diagnostic features of atopic dermatitis. Acta Dermatol. Venereol. 1980, 92, 44–47. [Google Scholar]
- Gelmetti, C.; Colonna, C. The value of SCORAD and beyond. Towards a standardized evaluation of severity? Allergy 2004, 59 (Suppl. S78), 61–65. [Google Scholar] [CrossRef] [PubMed]
- Fabb, S.A.; Davies, A.F.; Correa, I.; Kelly, A.P.; Mackie, C.; John Trowsdale, J.; Ragoussis, J. Generation of novel human MHC class II mutant B-cell lines by integrating YAC DNA into a cell line homozygously deleted for the MHC class II region. Hum. Mol. Genet. 1997, 6, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Basler, M.; Kirk, C.J.; Groettrup, M. The immunoproteasome in antigen processing and other immunological functions. Curr. Opin. Immunol. 2013, 25, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ebstein, F.; Kloetzel, P.M.; Kruger, E.; Seifert, U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell. Mol. Life Sci. 2012, 69, 2543–2558. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; David, C.; Morrison, D.C.; Reis, J. Proteasome protease mediated regulation of cytokine induction and inflammation. Biochim. Biophys. Acta 2012, 1823, 2087–2093. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD 20894. Available online: https://www.ncbi.nlm.nih.gov/snp/rs1351383#variant_details (accessed on 17 March 2021).
- Qian, J.; Liu, H.; Wei, S.; Liu, Z.; Li, Y.; Wang, L.E.; Chen, W.V.; Amos, C.I.; Lee, J.E.; Iles, M.M.; et al. Association between putative functional variants in the PSMB9 gene and risk of melanoma—Re-analysis of published melanoma genome-wide association studies. Pigment Cell Melanoma Res. 2013, 26, 392–401. [Google Scholar] [CrossRef]
- Li, T.; Liu, C.; Yao, Y.; Yu, J.; Shi, L.; Shen, Y. Association of LMP gene polymorphisms with chronic HCV infection among ethnic Han population from Yunnan. Chin. J. Med Genet. 2016, 33, 806–810. [Google Scholar]
- Li, C.; Dai, S.; Yan, Z.; Zhang, X.; Liu, S.; Wang, X.; Wang, J.; Shi, L.; Yao, Y. Genetic polymorphisms of proteasome subunit genes of the MHC-I antigen presenting system are associated with cervical cancer in a Chinese Han population. Hum. Immunol. 2020, 81, 445–451. [Google Scholar] [CrossRef]
- Irvine, A.D.; Osorio, P. Disease trajectories in childhood atopic dermatitis: An update and practitioner’s guide. Br. J. Dermatol. 2019, 181, 895–906. [Google Scholar] [CrossRef]
- Huang, A.H.; Roh, Y.S.; Sutaria, N.; Choi, J.; Williams, K.A.; Canner, J.K.; Grossberg, A.L.; Kwatra, S.G. Real-world comorbidities of atopic dermatitis in the pediatric ambulatory population in the United States. J. Am. Acad. Dermatol. 2021, 6, S0190–S9622. [Google Scholar]
- Jadeja, S.D.; Mansuri, M.S.; Singh, M.; Dwivedi, M.; Laddha, N.C.; Begum, R. A case-control study on association of proteasome subunit beta 8 (PSMB8) and transporter associated with antigen processing 1 (TAP1) polymorphisms and their transcript levels in vitiligo from Gujarat. PLoS ONE 2017, 12, e0180958. [Google Scholar] [CrossRef] [PubMed]
- Elhawary, N.A.; Bogari, N.; Jiffri, E.H.; Rashad, M.; Fatani, A.; Tayeb, M. Transporter TAP1-637G and immunoproteasome PSMB9-60H variants influence the risk of developing vitiligo in the Saudi population. Dis. Markers 2014, 260732. [Google Scholar] [CrossRef]
- Mandal, R.K.; Dar, S.A.; Jawed, A.; Wahid, M.; Lohani, M.; Aditya, K.; Panda, A.K.; Bhartendu, N.; Mishra, B.N.; Akhter, N.; et al. Impact of LMP7 (rs2071543) gene polymorphism in increasing cancer risk: Evidence from a meta-analysis and trial sequential analysis. Oncotarget 2018, 9, 6572–6585. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, D.-F.; Zhang, J.J.; Xiao Li, X.; Lu, Z.-P.; Shi, G.-D.; Yuan, H.; Yu-Gang Ge, Y.-G.; Wu, P.-F.; Wang, Y. Association between LMP2/LMP7 genetic variability and cancer susceptibility, especially among Asians: Evidence from a meta-analysis. Oncotarget 2017, 8, 62445–62453. [Google Scholar] [CrossRef] [PubMed]
- Zang, F.; Yao, Y.; Liu, M.; Fan, H.; Yue, M.; Chen, M.; Wang, J.; Yu, R.; Peng Huang, P. The association of LMP7 and TAP2 gene polymorphisms with treatment response to interferon/ribavirin in patients with genotype 1 chronic hepatitis C. Int. J. Mol. Med. 2017, 40, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Naderi, M.; Hashemi, M.; Amininia, S. Association of TAP1 and TAP2 gene polymorphisms with susceptibility to pulmonary tuberculosis. Iran. J. Allergy Asthma Immunol. 2016, 15, 62–68. [Google Scholar]
- Palomares-Marin, J.; Govea-Camacho, L.H.; Araujo-Caballero, V.; Cazarez-Navarro, G.; Rodriguez-Preciado, S.Y.; Ortiz-Hernandez, E.; Martinez-Lopez, E.; Muñoz-Valle, J.F.; Hernandez-Cañaveral, I.I. Association between the TAP1 gene polymorphisms and recurrent respiratory papillomatosis in patients from Western Mexico: A pilot study. J. Clin. Lab. Anal. 2021, e23712. [Google Scholar] [CrossRef]
- Shinde, V.; Marcinek, P.; Rani, D.S.; Sunder, S.R.; Arun, S.; Jain, S.; Nath, I.; Thangaraj, K.; Velavan, T.P.; Valluri, V.L. Genetic evidence of TAP1 gene variant as a susceptibility factor in Indian leprosy patients. Hum. Immunol. 2013, 74, 803–807. [Google Scholar] [CrossRef]
- Meng, J.; Li, W.; Zhang, M.; Hao, Z.; Fan, S.; Zhang, L.; Liang, C. An update meta-analysis and systematic review of TAP polymorphisms as potential biomarkers for judging cancer risk. Pathol. Res. Pract. 2018, 214, 1556–1563. [Google Scholar] [CrossRef]
- Liu, R.; Chen, X.; Qi, J. Associations of TAP1 genetic polymorphisms with atopic diseases: Asthma, rhinitis and dermatitis. Oncotarget 2018, 9, 1553–1562. [Google Scholar] [CrossRef]
- Thu, K.S.; Sato, N.; Ikeda, S.; Naka-Mieno, M.; Arai, T.; Mori, S.; Sawabe, M.; Muramatsu, M.; Tanaka, M. Association of polymorphisms of the transporter associated with antigen processing (TAP2) gene with pulmonary tuberculosis in an elderly Japanese population. Acta Pathol. Microbiol. Immunol. Scand. 2016, 24, 675–680. [Google Scholar] [CrossRef] [PubMed]
Gene | SNP | ID |
---|---|---|
LMP2 | rs1351383 (A>C; Intron 1) | C__8848996_10 |
LMP7 | rs2071543 (G>T; Gln49Lys) | C__15869253_10 |
TAP1 | rs1057141 (T>C; Ile333Val) | C__549926_20 |
rs1135216 (T>C; Asp637Gly) | C__531909_20 | |
TAP2 | rs4148876 (G>A; Arg651Cys) | C__30159972_10 |
rs16870908 (G>A; Leu647Phe) | C__34171660_10 |
SNP | Genotype/Allele | Patients ;N (%) | Controls ;N (%) | OR | 95% CI | χ2 | p |
---|---|---|---|---|---|---|---|
LMP2 (A>C) rs1351383 | A/A | 99 (38.1) | 123 (36.8) | 1 | |||
A/C | 122 (46.9) | 151 (45.2) | 1.01 | 0.70; 1.43 | 0.9252 | 0.629 | |
C/C | 39 (15.0) | 60 (18.0) | 0.81 | 0.50; 1.31 | |||
A | 320 (61.5) | 397 (59.4) | 1 | ||||
C | 200 (38.5) | 271 (40.6) | 0.92 | 0.72; 1.16 | 0.5422 | 0.461 | |
LMP7 (G>T) rs2071543 | G/G | 207 (84.8) | 260 (77.2) | 1 | |||
G/T | 35 (14.4) | 77 (22.5) | 0.58 | 0.37; 0.89 | 7.1014 | 0.028 | |
T/T | 2 (0.8) | 1 (0.3) | 2.09 | 0.27; 15.97 | |||
G | 449 (92.0) | 597 (88.3) | 1 | ||||
T | 39 (8.0) | 79 (11.7) | 0.66 | 0.44; 0.99 | 4.2429 | 0.039 | |
TAP1 (T>C) rs1057141 | T/T | 181 (69.5) | 237 (70.1) | 1 | |||
T/C | 74 (28.6) | 92 (27.2) | 1.05 | 0.73; 1.51 | 0.4305 | 0.8064 | |
C/C | 5 (1.9) | 9 (2.7) | 0.76 | 0.26; 2.16 | |||
T | 436 (83.8) | 566 (83.7) | 1 | ||||
C | 84 (16.2) | 110 (16.3) | 0.99 | 0.73;1.35 | 0.0030 | 0.9561 | |
TAP1 (T>C) rs1135216 | T/T | 183(70.4) | 256 (75.7) | 1 | |||
T/C | 73 (28.1) | 78 (23.1) | 1.31 | 0.90; 1.90 | 2.1675 | 0.338 | |
C/C | 4 (1.5) | 4 (1.2) | 1.40 | 0.37; 5.23 | |||
T | 439 (84.3) | 590 (87.3) | 1 | ||||
C | 81(15.7) | 86 (12.7) | 1.27 | 0.91;1.76 | 1.9925 | 0.158 | |
TAP2 (G>A) rs4148876 | G/G | 228 (87.7) | 301 (89.1) | 1 | |||
G/A | 30 (11.5) | 35 (10.3) | 1.13 | 0.68; 1.89 | 0.2893 | 0.865 | |
A/A | 2 (0.8) | 2 (0.6) | 1.32 | 0.23; 7.68 | |||
G | 486 (93.5) | 637 (94.2) | 1 | ||||
A | 34 (6.5) | 39 (5.8) | 1.14 | 0.71; 1.84 | 0.3032 | 0.582 | |
TAP2 (G>A) rs16870908 | G/G | 235 (90.4) | 302 (89.3) | 1 | |||
G/A | 23 (8.8) | 34 (10.1) | 0.87 | 0.50; 1.52 | 0.3136 | 0.855 | |
A/A | 2(0.8) | 2 (0.6) | 1.28 | 0.22; 7.48 | |||
G | 493 (94.8) | 638 (94.4) | 1 | ||||
A | 27 (5.2) | 38 (5.6) | 0.92 | 0.56; 1.53 | 0.1052 | 0.7457 |
SNP | Genotype | Men Age at Diagnosis, Years (SD) * | F | p | |
---|---|---|---|---|---|
LMP2 (A>C) | A/A | 23.22 (12.63) | 8.92 | <0.001 | |
rs1351383 | A/C | 15.04 (12.28) | |||
C/C | 15.05 (9.23) | ||||
LMP7 (G>T) | G/G | 17.52 (12.79) | 0.68 | 0.509 | |
rs2071543 | G/T | 20.44 (11.37) | |||
T/T | 15.67 (8.08) | ||||
TAP1 (T>C) rs1057141 | T/T | 20.62 (13.80) | 6.24 | 0.132 | |
T/C | 13.3 (7.88) | ||||
C/C | 27.0 (15.56) | ||||
TAP1 (T>C) rs1135216 | T/T | 19.64 (13.43) | 3.48 | 0.033 | |
T/C | 14.0 (9.46) | ||||
C/C | 24.0 (4.24) | ||||
TAP2 (G>A) rs4148876 | G/G | 18.2 (12.87) | 2.82 | 0.062 | |
G/A | 13.36 (9.76) | ||||
A/A | 7.33 (3.21) | ||||
TAP2 (G>A) rs16870908 | G/G | 17.62 (12.52) | 0.27 | 0.973 | |
G/A | 18.05 (14.77) | ||||
A/A | 14.18 (8.72) |
SNP | Genotype | SCORAD | |||
---|---|---|---|---|---|
Mild (<25) | Moderate (>25 < 50) | Severe (>50) | |||
LMP2(A>C) rs1351383 | A/A | 16 (27.6%) | 34 (44.7%) | 13 (43.3%) | |
A/C | 37 (63.8%) | 32 (42.1%) | 10 (33.3%) | p = 0.028 | |
C/C | 5 (8.6%) | 10 (13.2%) | 7 (23.3%) | V = 0.18 | |
LMP7 (G>T) rs2071543 | G/G | 55 (87.3%) | 75 (81.5%) | 38 (88.4%) | |
G/T | 6 (9.5%) | 16 (17.4%) | 5 (11.6%) | p = 0.476 | |
T/T | 2 (3.2%) | 1 (1.1%) | 0 (0.0%) | ||
TAP1 (T>C) rs1057141 | T/T | 29 (58.0%) | 57 (68.7%) | 28 (71.8%) | |
T/C | 21 (42.0%) | 24 (28.9%) | 11 (28.2%) | p = 0.372 | |
C/C | 0 (0.0%) | 2 (2.4%) | 0 (0.0%) | ||
TAP1 (T>C) rs1135216 | T/T | 38 (66.7%) | 65 (80.2%) | 27 (73.0%) | |
T/C | 19 (33.3%) | 16 (19.8%) | 8 (21.6%) | p = 0.046 | |
C/C | 0 (0.0%) | 0 (0.0%) | 2 (5.4%) | V = 0.18 | |
TAP2 (G>A) rs4148876 | G/G | 53 (80.3%) | 83 (85.6%) | 38 (91.0%) | |
G/A | 10 (16.7%) | 12 (13.4%) | 4 (9.0%) | p = 0.508 | |
A/A | 2 (3.0%) | 1 (1.0%) | 0 (0.0%) | ||
TAP2 (G>A) rs16870908 | G/G | 55 (87.3%) | 85 (88.5%) | 40 (90.9%) | |
G/A | 7 (11.1%) | 10 (10.4%) | 4 (9.1%) | p = 0.487 | |
A/A | 1 (1.6%) | 1 (1.1%) | 0 (0.0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niepiekło-Miniewska, W.; Matusiak, Ł.; Narbutt, J.; Lesiak, A.; Kuna, P.; Wiśniewski, A.; Kuśnierczyk, P. Contribution of Antigen-Processing Machinery Genetic Polymorphisms to Atopic Dermatitis. Life 2021, 11, 333. https://doi.org/10.3390/life11040333
Niepiekło-Miniewska W, Matusiak Ł, Narbutt J, Lesiak A, Kuna P, Wiśniewski A, Kuśnierczyk P. Contribution of Antigen-Processing Machinery Genetic Polymorphisms to Atopic Dermatitis. Life. 2021; 11(4):333. https://doi.org/10.3390/life11040333
Chicago/Turabian StyleNiepiekło-Miniewska, Wanda, Łukasz Matusiak, Joanna Narbutt, Alekandra Lesiak, Piotr Kuna, Andrzej Wiśniewski, and Piotr Kuśnierczyk. 2021. "Contribution of Antigen-Processing Machinery Genetic Polymorphisms to Atopic Dermatitis" Life 11, no. 4: 333. https://doi.org/10.3390/life11040333
APA StyleNiepiekło-Miniewska, W., Matusiak, Ł., Narbutt, J., Lesiak, A., Kuna, P., Wiśniewski, A., & Kuśnierczyk, P. (2021). Contribution of Antigen-Processing Machinery Genetic Polymorphisms to Atopic Dermatitis. Life, 11(4), 333. https://doi.org/10.3390/life11040333