The Interplay of Nutriepigenomics, Personalized Nutrition and Clinical Practice in Managing Food Allergy
Abstract
:1. Introduction
2. Disease Management and Current Clinical Challenges
3. Dual-Allergen Exposure Hypothesis and Shifting of Nutritional Intervention
4. Nutriepigenomics
5. The Role of Nutriepigenomics in Food Allergy
6. DNA Methylation Affects Gene Expression in the Presence of Food Allergens
7. Histone Acetylation Allows Gene Accessibility to Promote Allergy Reaction
8. The Role of Environmental Modulators of Nutriepigenomics
9. Personalized Nutrition in the Management of Food Allergy
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, S.G. Food Allergens: Landmarks along a Historic Trail. J. Allergy Clin. Immunol. 2008, 121, 1521–1524.e1. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.A. Food Allergy: Past, Present and Future. Allergol. Int. 2016, 65, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Prausnitz, C.; Kustner, H. Studies on Supersensitivity. Cent. Bakterio 1921, 86, 160–169. [Google Scholar]
- Prescott, S.; Allen, K.J. Food Allergy: Riding the Second Wave of the Allergy Epidemic. Pediatr. Allergy Immunol. 2011, 22, 155–160. [Google Scholar] [CrossRef]
- Nwaru, B.I.; Hickstein, L.; Panesar, S.S.; Roberts, G.; Muraro, A.; Sheikh, A. Prevalence of Common Food allergy in Europe: A Systematic Review and Meta-Analysis. Allergy 2014, 69, 992–1007. [Google Scholar] [CrossRef]
- Venkataraman, D.; Erlewyn-Lajeunesse, M.; Kurukulaaratchy, R.J.; Potter, S.; Roberts, G.; Matthews, S.; Arshad, S.H. Prevalence and Longitudinal Trends of Food Allergy during Childhood and Adolescence: Results of the Isle of Wight Birth Cohort Study. Clin. Exp. Allergy 2018, 48, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Soller, L.; Ben-Shoshan, M.; Harrington, D.W.; Fragapane, J.; Joseph, L.; Pierre, Y.S.; Godefroy, S.B.; La Vieille, S.; Elliott, S.J.; Clarke, A.E. Overall Prevalence of Self-Reported Food Allergy in Canada. J. Allergy Clin. Immunol. 2012, 130, P986–P988. [Google Scholar] [CrossRef]
- Branum, A.M.; Lukacs, S.L. Food Allergy among Children in the United States. Pediatrics 2009, 124, 1549–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, C.M.; Jiang, J.; Gupta, R.S. Epidemiology and Burden of Food Allergy. Curr. Allergy Asthma Rep. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Barni, S.; Liccioli, G.; Sarti, L.; Giovannini, M.; Novembre, E.; Mori, F. Immunoglobulin E (IgE)-Mediated Food Allergy in Children: Epidemiology, Pathogenesis, Diagnosis, Prevention, and Management. Medicina 2020, 56, 111. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Chang, E.; Han, Y.; Ahn, K.; Lee, S. Il The Incidence and Risk Factors of Immediate Type Food Allergy during the First Year of Life in Korean Infants: A Birth Cohort Study. Pediatr. Allergy Immunol. 2011, 22, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.C.; Tsai, T.C.; Huang, C.F.; Chang, F.Y.; Lin, C.C.; Huang, I.F.; Chu, C.H.; Lau, B.H.; Wu, L.; Peng, H.J.; et al. Prevalence of Food Allergy in Taiwan: A Questionnaire-Based Survey. Intern. Med. J. 2012, 42, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Holdford, D.; Bilaver, L.; Dyer, A.; Holl, J.L.; Meltzer, D. The Economic Impact of Childhood Food Allergy in the United States. JAMA Pediatr. 2013, 167, 1026–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, R.M.; Knibb, R.C.; Hourihane, J.O.B. Impact of Peanut Allergy on Quality of Life, Stress and Anxiety in the Family. Allergy Eur. J. Allergy Clin. Immunol. 2009, 64, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Sicherer, S.H.; Noone, S.A.; Muñoz-Furlong, A. The Impact of Childhood Food Allergy on Quality of Life. Ann. Allergy Asthma Immunol. 2001, 87, P461–P464. [Google Scholar] [CrossRef]
- Yadav, A.; Naidu, R. Clinical Manifestation and Sensitization of Allergic Children from Malaysia. Asia Pac. Allergy 2015, 5, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.J.; Thalayasingam, M.; Lee, B.W. Food Allergy in Asia: How Does It Compare? Asia Pac. Allergy 2013, 3, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.P.; Saffari, S.E.; Loh, W.; Goh, S.H.; Goh, A.; Chiang, W.C.; Chong, K.W. A 5-Year Retrospective Review of Children with Peanut Allergy in the Largest Paediatric Hospital in Singapore. Asia Pac. Allergy 2020, 10, e6. [Google Scholar] [CrossRef] [Green Version]
- Van Der Valk, J.P.M.; Dubois, A.E.J.; Gerth Van Wijk, R.; Wichers, H.J.; De Jong, N.W. Systematic Review on Cashew Nut Allergy. Allergy Eur. J. Allergy Clin. Immunol. 2014, 69, 692–698. [Google Scholar] [CrossRef]
- Chitta, S.; Lian, B.X.; Rao, R.; Loh, W.; Goh, A.; Chong, K.W. Cashew Nut Allergy in Singaporean Children. Asia Pac. Allergy 2018, 8, e29. [Google Scholar] [CrossRef]
- Din, N.; Rashid, B.; Ramli, K.I.; Mansor, N.A.; Abdullah, D. Revelation of Children and Adult’s Food Allergen in Malaysia. Preprints 2019. [Google Scholar] [CrossRef]
- Suther, C.; Moore, M.D.; Beigelman, A.; Zhou, Y. The Gut Microbiome and the Big Eight. Nutrients 2020, 12, 3728. [Google Scholar] [CrossRef] [PubMed]
- Teuber, S.S.; Beyer, K.; Comstock, S.; Wallowitz, M. The Big Eight Foods: Clinical and Epidemiological Overview. In Food Allergy; Maleki, S.J., Wesley Burks, A., Helm, R.M., Eds.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Oriel, R.C.; Wang, J. Diagnosis and Management of Food Allergy. Pediatr. Clin. N. Am. 2019, 66, P571–P585. [Google Scholar] [CrossRef]
- Gupta, M.; Cox, A.; Nowak-Węgrzyn, A.; Wang, J. Diagnosis of Food Allergy. Immunol. Allergy Clin. N. Am. 2018, 38, P39–P52. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.L.; Gurrin, L.C.; Dharmage, S.C.; Koplin, J.J.; Allen, K.J. The Natural History of IgE-Mediated Food Allergy: Can Skin Prick Tests and Serum-Specific IgE Predict the Resolution of Food Allergy? Int. J. Environ. Res. Public Health 2013, 10, 5039–5061. [Google Scholar] [CrossRef]
- Fleischer, D.M.; Bock, S.A.; Spears, G.C.; Wilson, C.G.; Miyazawa, N.K.; Gleason, M.C.; Gyorkos, E.A.; Murphy, J.R.; Atkins, D.; Leung, D.Y.M. Oral Food Challenges in Children with a Diagnosis of Food Allergy. J. Pediatr. 2011, 158, P578–P583.e1. [Google Scholar] [CrossRef] [PubMed]
- Eigenmann, P.A. Do We Still Need Oral Food Challenges for the Diagnosis of Food Allergy? Pediatr. Allergy Immunol. 2018, 29, 239–242. [Google Scholar] [CrossRef]
- Čelakovská, J.; Krcmova, I.; Bukac, J.; Vaneckova, J. Sensitivity and Specificity of Specific IgE, Skin Prick Test and Atopy Patch Test in Examination of Food Allergy. Food Agric. Immunol. 2017, 28, 238–247. [Google Scholar] [CrossRef]
- Mahoney, E.J.; Veling, M.C.; Mims, J.W. Food Allergy in Adults and Children. Otolaryngol. Clin. N. Am. 2011, 44, P815–P833. [Google Scholar]
- Bastiaan-Net, S.; Reitsma, M.; Cordewener, J.H.G.; Van Der Valk, J.P.M.; America, T.A.H.P.; Dubois, A.E.J.; Gerth Van Wijk, R.; Savelkoul, H.F.J.; De Jong, N.W.; Wichers, H.J. IgE Cross-Reactivity of Cashew Nut Allergens. Int. Arch. Allergy Immunol. 2019, 178, 19–32. [Google Scholar] [CrossRef]
- Hemmings, O.; Du Toit, G.; Radulovic, S.; Lack, G.; Santos, A.F. Ara h 2 Is the Dominant Peanut Allergen despite Similarities with Ara h 6. J. Allergy Clin. Immunol. 2020, 146, P621–P630.e5. [Google Scholar] [CrossRef]
- Aalberse, R.C.; Akkerdaas, J.; Van Ree, R. Cross-Reactivity of IgE Antibodies to Allergens. Allergy Eur. J. Allergy Clin. Immunol. 2001, 56, 478–490. [Google Scholar] [CrossRef]
- Cavagni, G.; D’Urbano, L.; Donnanno, S.; Trimarco, G.; Misirocchi, E.; Artesani, M.; Mancini, S.; Koch, P.; Riccardi, C.; Tozzi, A. Performance of a Component-Based Allergen Microarray in Children with Cow’s Milk and Egg Allergy. J. Allergy Clin. Immunol. 2009, 123, S31. [Google Scholar] [CrossRef]
- Dodig, S.; Čepelak, I. The Potential of Component-Resolved Diagnosis in Laboratory Diagnostics of Allergy. Biochem. Med. 2018, 28, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Patelis, A.; Borres, M.P.; Kober, A.; Berthold, M. Multiplex Component-Based Allergen Microarray in Recent Clinical Studies. Clin. Exp. Allergy 2016, 46, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Agache, I.; Clark, A.; Sheikh, A.; Roberts, G.; Akdis, C.A.; Borrego, L.M.; Higgs, J.; Hourihane, J.O.; Jorgensen, P.; et al. EAACI Food Allergy and Anaphylaxis Guidelines: Managing Patients with Food Allergy in the Community. Allergy Eur. J. Allergy Clin. Immunol. 2014, 69, 1046–1057. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Sampson, H.A. Food Allergy: Epidemiology, Pathogenesis, Diagnosis, and Treatment. J. Allergy Clin. Immunol. 2014, 133, 291–307.e5. [Google Scholar] [CrossRef]
- Eigenmann, P.A.; Beyer, K.; Lack, G.; Muraro, A.; Ong, P.Y.; Sicherer, S.H.; Sampson, H.A. Are Avoidance Diets Still Warranted in Children with Atopic Dermatitis? Pediatr. Allergy Immunol. 2020, 31, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Özdoğan, E.; Melek, H.E.; Büyüktiryaki, B.; Nacaroğlu, H.T.; Dut, R.; Soyer, Ö.; Şahiner, Ü.M.; Yılmaz, E.A.; Akkaya, A.D.; Kızılkan, N.U.; et al. Over Restrictive Elimination of Foods in Children with Food Allergy. Turk. J. Pediatr. 2021, 63, 175–184. [Google Scholar] [CrossRef]
- Meyer, R.; Wright, K.; Vieira, M.C.; Chong, K.W.; Chatchatee, P.; Vlieg-Boerstra, B.J.; Groetch, M.; Dominguez-Ortega, G.; Heath, S.; Lang, A.; et al. International Survey on Growth Indices and Impacting Factors in Children with Food allergy. J. Hum. Nutr. Diet. 2019, 32, 175–184. [Google Scholar] [CrossRef]
- Togias, A.; Cooper, S.F.; Acebal, M.L.; Assa’ad, A.; Baker, J.R.; Beck, L.A.; Block, J.; Byrd-Bredbenner, C.; Chan, E.S.; Eichenfield, L.F.; et al. Addendum Guidelines for the Prevention of Peanut Allergy in the United States: Report of the National Institute of Allergy and Infectious Diseases–Sponsored Expert Panel. J. Allergy Clin. Immunol. 2017, 139, P29–P44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turcanu, V.; Brough, H.A.; Du Toit, G.; Foong, R.X.; Marrs, T.; Santos, A.F.; Lack, G. Immune Mechanisms of Food Allergy and Its Prevention by Early Intervention. Curr. Opin. Immunol. 2017, 48, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Renz, H.; Allen, K.J.; Sicherer, S.H.; Sampson, H.A.; Lack, G.; Beyer, K.; Oettgen, H.C. Food Allergy. Nat. Rev. Dis. Prim. 2018, 4, 17098. [Google Scholar] [CrossRef]
- Lozano-Ojalvo, D.; Berin, C.; Tordesillas, L. Immune Basis of Allergic Reactions to Food. J. Investig. Allergol. Clin. Immunol. 2019, 29, 1–14. [Google Scholar] [CrossRef]
- Du Toit, G.; Sampson, H.A.; Plaut, M.; Burks, A.W.; Akdis, C.A.; Lack, G. Food Allergy: Update on Prevention and Tolerance. J. Allergy Clin. Immunol. 2018, 141, P30–P40. [Google Scholar] [CrossRef] [Green Version]
- Brough, H.A.; Nadeau, K.C.; Sindher, S.B.; Alkotob, S.S.; Chan, S.; Bahnson, H.T.; Leung, D.Y.M.; Lack, G. Epicutaneous Sensitization in the Development of Food Allergy: What Is the Evidence and How Can This Be Prevented? Allergy Eur. J. Allergy Clin. Immunol. 2020, 75, 2185–2205. [Google Scholar] [CrossRef]
- Filho, N.R. Early Introduction of Food to Prevent Food Allergy. the LEAP Study (Learning Early about Peanut). Rev. Paul. Pediatr. 2015, 33. [Google Scholar] [CrossRef] [Green Version]
- Perkin, M.R.; Logan, K.; Marrs, T.; Radulovic, S.; Craven, J.; Flohr, C.; Lack, G. Enquiring about Tolerance (EAT) Study: Feasibility of an Early Allergenic Food Introduction Regimen. J. Allergy Clin. Immunol. 2016, 137, P1477–P1486.e8. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, D.M.; Sicherer, S.; Greenhawt, M.; Campbell, D.; Chan, E.; Muraro, A.; Halken, S.; Katz, Y.; Ebisawa, M.; Eichenfield, L.; et al. Consensus Communication on Early Peanut Introduction and the Prevention of Peanut Allergy in High-Risk Infants. J. Allergy Clin. Immunol. 2015, 136, P258–P261. [Google Scholar] [CrossRef] [PubMed]
- Halken, S.; Muraro, A.; de Silva, D.; Khaleva, E.; Angier, E.; Arasi, S.; Arshad, H.; Bahnson, H.T.; Beyer, K.; Boyle, R.; et al. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). Pediatr. Allergy Immunol. 2021, 32, 843–858. [Google Scholar] [CrossRef]
- Ferraro, V.; Zanconato, S.; Carraro, S. Timing of Food Introduction and the Risk of Food Allergy. Nutrients 2019, 11, 1131. [Google Scholar] [CrossRef] [Green Version]
- De Schryver, S.; Dery, A.; Clarke, A.E.; Nadeau, K.C.; Harada, L.; Greenwood, C.; Weatherall, K.; Daley, D.; Asai, Y.; Bamforth, F.; et al. START: Susceptibility to Food allergy in a Registry of Twins. J. Allergy Clin. Immunol. 2016, 137, AB152. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Furlong, T.J.; Maes, H.H.; Desnick, R.J.; Sampson, H.A.; Gelb, B.D. Genetics of Peanut Allergy: A Twin Study. J. Allergy Clin. Immunol. 2000, 106, P53–P56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neeha, V.S.; Kinth, P. Nutrigenomics Research: A Review. J. Food Sci. Technol. 2012, 50, 415–428. [Google Scholar] [CrossRef] [Green Version]
- James, W.P.T.; Johnson, R.J.; Speakman, J.R.; Wallace, D.C.; Frühbeck, G.; Iversen, P.O.; Stover, P.J. Nutrition and Its Role in Human Evolution. J. Intern. Med. 2019, 285, 533–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhondalay, G.K.; Rael, E.; Acharya, S.; Zhang, W.; Sampath, V.; Galli, S.J.; Tibshirani, R.; Boyd, S.D.; Maecker, H.; Nadeau, K.C.; et al. Food Allergy and Omics. J. Allergy Clin. Immunol. 2018, 141, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Van Gool, F.; Nguyen, M.L.T.; Mumbach, M.R.; Satpathy, A.T.; Rosenthal, W.L.; Giacometti, S.; Le, D.T.; Liu, W.; Brusko, T.M.; Anderson, M.S.; et al. A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity 2019, 50, 362–377.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.; Tourigny, M.R.; Noakes, P.; Thornton, C.A.; Tulic, M.K.; Prescott, S.L. Children with Egg Allergy Have Evidence of Reduced Neonatal CD4+CD25+CD127lo/− Regulatory T Cell Function. J. Allergy Clin. Immunol. 2008, 121, 1460–1466.e7. [Google Scholar] [CrossRef]
- Tost, J. DNA Methylation: An Introduction to the Biology and the Disease-Associated Changes of a Promising Biomarker. Mol. Biotechnol. 2009, 44, 71–81. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Schübeler, D. Function and Information Content of DNA Methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef]
- Ek, W.E.; Ahsan, M.; Rask-Andersen, M.; Liang, L.; Moffatt, M.F.; Gyllensten, U.; Johansson, Å. Epigenome-Wide DNA Methylation Study of IgE Concentration in Relation to Self-Reported Allergies. Epigenomics 2017, 9, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Van Meel, E.R.; Cardenas, A.; Rifas-Shiman, S.L.; Sonawane, A.R.; Glass, K.R.; Gold, D.R.; Platts-Mills, T.A.; Lin, X.; Oken, E.; et al. Epigenome-Wide Association Study Reveals Methylation Pathways Associated with Childhood Allergic Sensitization. Epigenetics 2019, 14, 445–466. [Google Scholar] [CrossRef]
- Martino, D.J.; Joo, J.E.; Sexton-Oates, A.; Dang, T.; Allen, K.; Saffery, R.; Prescott, S. Epigenome-Wide Association Study Reveals Longitudinally Stable DNA Methylation Differences in CD4+ T Cells from Children with IgE-Mediated Food Allergy. Epigenetics 2014, 9, 998–1006. [Google Scholar] [CrossRef]
- Martino, D.J.; Prescott, S.L. Silent Mysteries: Epigenetic Paradigms Could Hold the Key to Conquering the Epidemic of Allergy and Immune Disease. Allergy 2010, 65, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.E.; Eckert, J.K.; Koplin, J.J.; Lowe, A.J.; Gurrin, L.C.; Dharmage, S.C.; Vuillermin, P.; Tang, M.L.K.; Ponsonby, A.-L.; Matheson, M.; et al. Which Infants with Eczema Are at Risk of Food Allergy? Results from a Population-based Cohort. Clin. Exp. Allergy 2015, 45, 255–264. [Google Scholar] [CrossRef]
- Suarez-Alvarez, B.; Rodriguez, R.M.; Fraga, M.F.; López-Larrea, C. DNA Methylation: A Promising Landscape for Immune System-Related Diseases. Trends Genet. 2012, 28, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Han, X.; Lyu, S.-C.; Bunning, B.; Kost, L.; Chang, I.; Cao, S.; Sampath, V.; Nadeau, K.C. Targeted DNA Methylation Profiling Reveals Epigenetic Signatures in Peanut Allergy. JCI Insight 2021, 6, e143058. [Google Scholar] [CrossRef]
- Hong, X.; Hao, K.; Ladd-Acosta, C.; Hansen, K.D.; Tsai, H.-J.; Liu, X.; Xu, X.; Thornton, T.A.; Caruso, D.; Keet, C.A.; et al. Genome-Wide Association Study Identifies Peanut Allergy-Specific Loci and Evidence of Epigenetic Mediation in US Children. Nat. Commun. 2015, 6, 6304. [Google Scholar] [CrossRef]
- Brown, S.J.; Asai, Y.; Cordell, H.J.; Campbell, L.E.; Zhao, Y.; Liao, H.; Northstone, K.; Henderson, J.; Alizadehfar, R.; Ben-Shoshan, M.; et al. Loss-of-Function Variants in the Filaggrin Gene Are a Significant Risk Factor for Peanut Allergy. J. Allergy Clin. Immunol. 2011, 127, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Syed, A.; Garcia, M.A.; Lyu, S.-C.; Bucayu, R.; Kohli, A.; Ishida, S.; Berglund, J.P.; Tsai, M.; Maecker, H.; O’Riordan, G.; et al. Peanut Oral Immunotherapy Results in Increased Antigen-Induced Regulatory T-Cell Function and Hypomethylation of Forkhead Box Protein 3 (FOXP3). J. Allergy Clin. Immunol. 2014, 133, 500–510.e11. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Yang, I.V.; Davidson, E.J.; Joetham, A.; Takeda, K.; O’Connor, B.P.; Gelfand, E.W. Forkhead Box Protein 3 Demethylation Is Associated with Tolerance Induction in Peanut-Induced Intestinal Allergy. J. Allergy Clin. Immunol. 2018, 141, 659–670.e2. [Google Scholar] [CrossRef] [Green Version]
- Chiang, D.; Chen, X.; Jones, S.M.; Wood, R.A.; Sicherer, S.H.; Burks, A.W.; Leung, D.Y.M.; Agashe, C.; Grishin, A.; Dawson, P.; et al. Single-Cell Profiling of Peanut-Responsive T Cells in Patients with Peanut Allergy Reveals Heterogeneous Effector TH2 Subsets. J. Allergy Clin. Immunol. 2018, 141, 2107–2120. [Google Scholar] [CrossRef] [Green Version]
- Neeland, M.R.; Andorf, S.; Manohar, M.; Dunham, D.; Lyu, S.-C.; Dang, T.D.; Peters, R.L.; Perrett, K.P.; Tang, M.L.K.; Saffery, R.; et al. Mass Cytometry Reveals Cellular Fingerprint Associated with IgE+ Peanut Tolerance and Allergy in Early Life. Nat. Commun. 2020, 11, 1091. [Google Scholar] [CrossRef] [PubMed]
- Asai, Y.; Eslami, A.; van Ginkel, C.D.; Akhabir, L.; Wan, M.; Ellis, G.; Ben-Shoshan, M.; Martino, D.; Ferreira, M.A.; Allen, K.; et al. Genome-Wide Association Study and Meta-Analysis in Multiple Populations Identifies New Loci for Peanut Allergy and Establishes C11orf30/EMSY as a Genetic Risk Factor for Food Allergy. J. Allergy Clin. Immunol. 2018, 141, 991–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, A.K.; Thomas, T. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. BioEssays 2018, 40, 1800078. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, N.; Frumento, P.; Harb, H.; Alashkar Alhamwe, B.; Johansson, C.; Eick, L.; Alm, J.; Renz, H.; Scheynius, A.; Potaczek, D. Histone Acetylation of Immune Regulatory Genes in Human Placenta in Association with Maternal Intake of Olive Oil and Fish Consumption. Int. J. Mol. Sci. 2019, 20, 1060. [Google Scholar] [CrossRef] [Green Version]
- Abbring, S.; Wolf, J.; Ayechu-Muruzabal, V.; Diks, M.A.P.; Alhamwe, B.A.; Alhamdan, F.; Harb, H.; Renz, H.; Garn, H.; Garssen, J.; et al. Raw Cow’s Milk Reduces Allergic Symptoms in a Murine Model for Food Allergy—A Potential Role For Epigenetic Modifications. Nutrients 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Alashkar Alhamwe, B.; Meulenbroek, L.A.P.M.; Veening-Griffioen, D.H.; Wehkamp, T.M.D.; Alhamdan, F.; Miethe, S.; Harb, H.; Hogenkamp, A.; Knippels, L.M.J.; Pogge von Strandmann, E.; et al. Decreased Histone Acetylation Levels at Th1 and Regulatory Loci after Induction of Food Allergy. Nutrients 2020, 12, 3193. [Google Scholar] [CrossRef]
- Krajewski, D.; Kaczenski, E.; Rovatti, J.; Polukort, S.; Thompson, C.; Dollard, C.; Ser-Dolansky, J.; Schneider, S.S.; Kinney, S.R.M.; Mathias, C.B. Epigenetic Regulation via Altered Histone Acetylation Results in Suppression of Mast Cell Function and Mast Cell-Mediated Food Allergic Responses. Front. Immunol. 2018, 9, 2414. [Google Scholar] [CrossRef]
- Johnston, L.K.; Chien, K.B.; Bryce, P.J. The Immunology of Food Allergy. J. Immunol. 2014, 192, 2529–2534. [Google Scholar] [CrossRef] [Green Version]
- Kuehn, A.; Swoboda, I.; Arumugam, K.; Hilger, C.; Hentges, F. Fish Allergens at a Glance: Variable Allergenicity of Parvalbumins, the Major Fish Allergens. Front. Immunol. 2014, 5, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkema, D.; Emons, J.A.M.; Van de Ven, A.A.J.M.; Oude Elberink, J.N.G. Fish Allergy: Fishing for Novel Diagnostic and Therapeutic Options. Clin. Rev. Allergy Immunol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.S.; Yuen, A.W.; Wai, C.Y.; Leung, N.Y.; Chu, K.H.; Leung, P.S. Diagnosis of Fish and Shellfish Allergies. J. Asthma Allergy 2018, 11, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Nieuwenhuizen, N.; Lopata, A.L.; Jeebhay, M.F.; Herbert, D.R.; Robins, T.G.; Brombacher, F. Exposure to the Fish Parasite Anisakis Causes Allergic Airway Hyperreactivity and Dermatitis. J. Allergy Clin. Immunol. 2006, 117, P1098–P1105. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.M.A.; Helleur, R.J.; Jeebhay, M.F.; Lopata, A.L. Characterization of Seafood Proteins Causing Allergic Diseases. Available online: https://www.intechopen.com/chapters/31774 (accessed on 21 September 2021).
- Khor, S.-S.; Morino, R.; Nakazono, K.; Kamitsuji, S.; Akita, M.; Kawajiri, M.; Yamasaki, T.; Kami, A.; Hoshi, Y.; Tada, A.; et al. Genome-Wide Association Study of Self-Reported Food Reactions in Japanese Identifies Shrimp and Peach Specific Loci in the HLA-DR/DQ Gene Region. Sci. Rep. 2018, 8, 1069. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.D.; Allen, K.J.; Martino, D.J.; Koplin, J.J.; Licciardi, P.V.; Tang, M.L.K. Food-Allergic Infants Have Impaired Regulatory T-Cell Responses Following in Vivo Allergen Exposure. Pediatr. Allergy Immunol. 2016, 27, 35–43. [Google Scholar] [CrossRef]
- Gizzarelli, F.; Corinti, S.; Barletta, B.; Iacovacci, P.; Brunetto, B.; Butteroni, C.; Afferni, C.; Onori, R.; Miraglia, M.; Panzini, G.; et al. Evaluation of Allergenicity of Genetically Modified Soybean Protein Extract in a Murine Model of Oral Allergen-Specific Sensitization. Clin. Exp. Allergy 2006, 36, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.N.; Chatila, T.A. Regulatory T Cells in Allergic Diseases. J. Allergy Clin. Immunol. 2016, 138, P639–P652. [Google Scholar] [CrossRef] [Green Version]
- Martino, D.; Neeland, M.; Dang, T.; Cobb, J.; Ellis, J.; Barnett, A.; Tang, M.; Vuillermin, P.; Allen, K.; Saffery, R. Epigenetic Dysregulation of Naive CD4+ T-Cell Activation Genes in Childhood Food Allergy. Nat. Commun. 2018, 9, 3308. [Google Scholar] [CrossRef]
- Saulyte, J.; Regueira, C.; Montes-Martínez, A.; Khudyakov, P.; Takkouche, B. Active or Passive Exposure to Tobacco Smoking and Allergic Rhinitis, Allergic Dermatitis, and Food Allergy in Adults and Children: A Systematic Review and Meta-Analysis. PLoS Med. 2014, 11, e1001611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tezza, G.; Mazzei, F.; Boner, A. Epigenetics of Allergy. Early Hum. Dev. 2013, 89, S20–S21. [Google Scholar] [CrossRef]
- Cheng, D.; Li, W.; Wang, L.; Lin, T.; Poiani, G.; Wassef, A.; Hudlikar, R.; Ondar, P.; Brunetti, L.; Kong, A.-N. Pharmacokinetics, Pharmacodynamics, and PKPD Modeling of Curcumin in Regulating Antioxidant and Epigenetic Gene Expression in Healthy Human Volunteers. Mol. Pharm. 2019, 16, 1881–1889. [Google Scholar] [CrossRef] [PubMed]
- Giannetti, A.; Bernardini, L.; Cangemi, J.; Gallucci, M.; Masetti, R.; Ricci, G. Role of Vitamin D in Prevention of Food Allergy in Infants. Front Pediatr. 2020, 8, 447. [Google Scholar] [CrossRef]
- Allen, K.J.; Koplin, J.J.; Ponsonby, A.-L.; Gurrin, L.C.; Wake, M.; Vuillermin, P.; Martin, P.; Matheson, M.; Lowe, A.; Robinson, M.; et al. Vitamin D Insufficiency Is Associated with Challenge-Proven Food Allergy in Infants. J. Allergy Clin. Immunol. 2013, 131, 1109–1116.e6. [Google Scholar] [CrossRef]
- Rastelli, M.; Knauf, C.; Cani, P.D. Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity 2018, 26, 792–800. [Google Scholar] [CrossRef]
- Paparo, L.; Nocerino, R.; Scala, C.D.; Gatta, G.D.; Costanzo, M.D.; Buono, A.; Bruno, C.; Canani, R.B. Targeting Food Allergy with Probiotics. Adv. Exp. Med. Biol. 2019, 1125, 57–68. [Google Scholar] [CrossRef]
- Koleva, P.T.; Kim, J.-S.; Scott, J.A.; Kozyrskyj, A.L. Microbial Programming of Health and Disease Starts during Fetal Life. Birth Defects Res. Part C Embryo Today Rev. 2015, 105, 265–277. [Google Scholar] [CrossRef]
- Kuitunen, M. Probiotics and prebiotics in preventing food allergy and eczema. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 280–286. [Google Scholar] [CrossRef]
- Brosseau, C.; Selle, A.; Palmer, D.J.; Prescott, S.L.; Barbarot, S.; Bodinier, M. Prebiotics: Mechanisms and Preventive Effects in Allergy. Nutrients 2019, 11, 1841. [Google Scholar] [CrossRef] [Green Version]
- Guarino, M.P.L.; Altomare, A.; Emerenziani, S.; Di Rosa, C.; Ribolsi, M.; Balestrieri, P.; Iovino, P.; Rocchi, G.; Cicala, M. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients 2020, 12, 1037. [Google Scholar] [CrossRef] [Green Version]
- Vähämiko, S.; Laiho, A.; Lund, R.; Isolauri, E.; Salminen, S.; Laitinen, K. The Impact of Probiotic Supplementation during Pregnancy on DNA Methylation of Obesity-Related Genes in Mothers and Their Children. Eur. J. Nutr. 2018, 58, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Sahhaf Ebrahimi, F.; Homayouni Rad, A.; Mosen, M.; Abbasalizadeh, F.; Tabrizi, A.; Khalili, L. Effect of L. acidophilus and B. lactis on Blood Glucose in Women with Gestational Diabetes Mellitus: A Randomized Placebo-Controlled Trial. Diabetol. Metab. Syndr. 2019, 11, 75. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, X.; Huang, X.; He, H.; Zheng, J. Association between Probiotic Yogurt Intake and Gestational Diabetes Mellitus: A Case-Control Study. Iran. J. Public Health 2020, 1248–1256. [Google Scholar] [CrossRef]
- Castellazzi, A.M.; Valsecchi, C.; Caimmi, S.; Licari, A.; Marseglia, A.; Leoni, M.C.; Caimmi, D.; Miraglia del Giudice, M.; Leonardi, S.; La Rosa, M.; et al. Probiotics and Food Allergy. Ital. J. Pediatr. 2013, 39, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefi, B.; Eslami, M.; Ghasemian, A.; Kokhaei, P.; Farrokhi, A.S.; Darabi, N. Probiotics Importance and Their Immunomodulatory Properties. J. Cell. Physiol. 2019, 234, 8008–8018. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.; Bahar, A.; Keikha, M.; Karbalaei, M.; Kobyliak, N.M.; Yousefi, B. Probiotics Function and Modulation of the Immune System in Allergic Diseases. Allergol. Immunopatho. 2020, 48, 771–788. [Google Scholar] [CrossRef]
- Ghadimi, D.; Helwig, U.; Schrezenmeir, J.; Heller, K.J.; de Vrese, M. Epigenetic Imprinting by Commensal Probiotics Inhibits the IL-23/IL-17 Axis in an in Vitro Model of the Intestinal Mucosal Immune System. J. Leukoc. Biol. 2012, 92, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef] [Green Version]
- Le Bourgot, C.; Le Normand, L.; Formal, M.; Respondek, F.; Blat, S.; Apper, E.; Ferret-Bernard, S.; Le Huërou-Luron, I. Maternal Short-Chain Fructo-Oligosaccharide Supplementation Increases Intestinal Cytokine Secretion, Goblet Cell Number, Butyrate Concentration and Lawsonia Intracellularis Humoral Vaccine Response in Weaned Pigs. Br. J. Nutr. 2017, 117, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Sestito, S.; D’Auria, E.; Baldassarre, M.E.; Salvatore, S.; Tallarico, V.; Stefanelli, E.; Tarsitano, F.; Concolino, D.; Pensabene, L. The Role of Prebiotics and Probiotics in Prevention of Allergic Diseases in Infants. Front. Pediatr. 2020, 8, 583946. [Google Scholar] [CrossRef]
- Bouchaud, G.; Castan, L.; Chesné, J.; Braza, F.; Aubert, P.; Neunlist, M.; Magnan, A.; Bodinier, M. Maternal Exposure to GOS/Inulin Mixture Prevents Food allergy and Promotes Tolerance in Offspring in Mice. Allergy 2015, 71, 68–76. [Google Scholar] [CrossRef]
- Van Esch, B.C.A.M.; Porbahaie, M.; Abbring, S.; Garssen, J.; Potaczek, D.P.; Savelkoul, H.F.J.; van Neerven, R.J.J. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front. Immunol. 2020, 11, 2141. [Google Scholar] [CrossRef] [PubMed]
- Celis-Morales, C.; Livingstone, K.M.; Marsaux, C.F.; Macready, A.L.; Fallaize, R.; O’Donovan, C.B.; Woolhead, C.; Forster, H.; Walsh, M.C.; Navas-Carretero, S.; et al. Food4Me Study. Effect of personalized nutrition on health-related behaviour change: Evidence from the Food4Me European randomized controlled trial. Int. J. Epidemiol. 2017, 46, 578–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, C.L.; Blumberg, J.B.; El-Sohemy, A.; Minich, D.M.; Ordovás, J.M.; Reed, D.G.; Behm, V.A.Y. Toward the Definition of Personalized Nutrition: A Proposal by The American Nutrition Association. J. Am. Coll. Nutr. 2020, 39, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, K.M.; Celis-Morales, C.; Navas-Carretero, S.; San-Cristobal, R.; Forster, H.; Woolhead, C.; O’Donovan, C.B.; Moschonis, G.; Manios, Y.; Traczyk, I.; et al. Food4Me Study. Personalised nutrition advice reduces intake of discretionary foods and beverages: Findings from the Food4Me randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 70. [Google Scholar] [CrossRef]
- Murgia, C.; Adamski, M.M. Translation of Nutritional Genomics into Nutrition Practice: The Next Step. Nutrients 2017, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, E.; Abrahams, M.; Zuccotti, G.; Venter, C. Personalized Nutrition Approach in Food Allergy: Is It Prime Time Yet? Nutrients 2019, 11, 359. [Google Scholar] [CrossRef] [Green Version]
- Stiefel, G.; Roberts, G. How to use serum-specific IgE measurements in diagnosing and monitoring food allergy. Arch. Dis. Child. Educ. Pract. Ed. 2012, 97, 29–36. [Google Scholar] [CrossRef]
- Costa, C.; Coimbra, A.; Vítor, A.; Aguiar, R.; Ferreira, A.L.; Todo-Bom, A. Food Allergy—From Food Avoidance to Active Treatment. Scand. J. Immunol. 2020, 91, e12824. [Google Scholar] [CrossRef]
- Venter, C.; Groetch, M.; Netting, M.; Meyer, R. A Patient-specific Approach to Develop an Exclusion Diet to Manage Food Allergy in Infants and Children. Clin. Exp. Allergy 2018, 48, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, K. Safety of Oral Food Challenges in Early Life. Children 2018, 5, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upton, J.E.M.; Bird, J.A. Oral Food Challenges: Special Considerations. Ann. Allergy Asthma Immunol. 2020, 124, 451–458. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Hamzaid, N.H.; Ismail, N.A.S. The Interplay of Nutriepigenomics, Personalized Nutrition and Clinical Practice in Managing Food Allergy. Life 2021, 11, 1275. https://doi.org/10.3390/life11111275
Ali A, Hamzaid NH, Ismail NAS. The Interplay of Nutriepigenomics, Personalized Nutrition and Clinical Practice in Managing Food Allergy. Life. 2021; 11(11):1275. https://doi.org/10.3390/life11111275
Chicago/Turabian StyleAli, Adli, Nur Hana Hamzaid, and Noor Akmal Shareela Ismail. 2021. "The Interplay of Nutriepigenomics, Personalized Nutrition and Clinical Practice in Managing Food Allergy" Life 11, no. 11: 1275. https://doi.org/10.3390/life11111275
APA StyleAli, A., Hamzaid, N. H., & Ismail, N. A. S. (2021). The Interplay of Nutriepigenomics, Personalized Nutrition and Clinical Practice in Managing Food Allergy. Life, 11(11), 1275. https://doi.org/10.3390/life11111275