Extracellular ATP Induced S-Phase Cell Cycle Arrest via P2Y Receptor-Activated ERK Signaling in Poorly Differentiated Oral Squamous Cell Carcinoma SAS Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. GEPIA Dataset Analysis
2.3. Real-Time Polymerase Chain Reaction (qPCR)
2.4. Measurement of Intracellular Ca2+
2.5. Western Blotting
2.6. Cell Cycle Assay
2.7. Trypan Blue Exclusion Assay
2.8. Clonogenic Assay
2.9. Apoptosis Assay
2.10. Statistical Analysis
3. Results
3.1. Expression and Patient Survival Analysis of P2Y Receptors in HNSCC
3.2. Expression of mRNA Encoding P2Y Receptors in OSCC Cell Lines
3.3. ATP Induced Intracellular Ca2+ Release and ERK Phosphorylation in OSCC Cell Lines
3.4. ATP Induced S-Phase Arrest via ERK Signaling
3.5. ATP Suppressed Cell Proliferation and Significantly Induced Apoptosis in OSCC Cell Lines
3.6. ATP Did Not Influence the Mitotic Arrest Effect of Docetaxel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Y.; Liu, F.; Guo, J.; Gui, R. Upregulation of circ_0000199 in circulating exosomes is associated with survival outcome in OSCC. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Tomita, H.; Nakashima, T.; Hirata, A.; Tanaka, T.; Shibata, T.; Hara, A. Current mouse models of oral squamous cell carcinoma: Genetic and chemically induced models. Oral Oncol. 2017, 73, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Economopoulou, P.; de Bree, R.; Kotsantis, I.; Psyrri, A. Diagnostic tumor markers in head and neck squamous cell carcinoma (HNSCC) in the clinical setting. Front. Oncol. 2019, 9, 827. [Google Scholar] [CrossRef] [PubMed]
- Pentangelo, G.; Nisticò, S.P.; Provenzano, E.; Cisale, G.Y.; Bennardo, L. Topical 5% Imiquimod Sequential to Surgery for HPV-Related Squamous Cell Carcinoma of the Lip. Medicina 2021, 57, 563. [Google Scholar] [CrossRef] [PubMed]
- Bennardo, L.; Bennardo, F.; Giudice, A.; Passante, M.; Dastoli, S.; Morrone, P.; Provenzano, E.; Patruno, C.; Nisticò, S.P. Local chemotherapy as an adjuvant treatment in unresectable squamous cell carcinoma: What do we know so far? Curr. Oncol. 2021, 28, 2317–2325. [Google Scholar] [CrossRef] [PubMed]
- Brands, M.T.; Smeekens, E.A.; Takes, R.P.; Kaanders, J.H.; Verbeek, A.L.; Merkx, M.A.; Geurts, S.M. Time patterns of recurrence and second primary tumors in a large cohort of patients treated for oral cavity cancer. Cancer Med. 2019, 8, 5810–5819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, S.G.; Von Bialy, R.; Falougy, M.; Steller, D.; Tharun, L.; Rades, D.; Sieg, P.; Alsharif, U. Impact of stratified resection margin classification on local tumor control and survival in patients with oral squamous cell carcinoma. J. Surg. Oncol. 2021. [Google Scholar] [CrossRef]
- Wang, W.; Adeoye, J.; Thomson, P.; Choi, S.W. Multiple tumour recurrence in oral, head and neck cancer: Characterising the patient journey. J. Oral Pathol. Med. 2021. [Google Scholar] [CrossRef]
- Wu, H.-T.; Chen, W.-T.; Li, G.-W.; Shen, J.-X.; Ye, Q.-Q.; Zhang, M.-L.; Chen, W.-J.; Liu, J. Analysis of the Differentially Expressed Genes Induced by Cisplatin Resistance in Oral Squamous Cell Carcinomas and Their Interaction. Front. Genet. 2020, 10, 1328. [Google Scholar] [CrossRef]
- Law, Z.-J.; Khoo, X.-H.; Lim, P.-T.; Ming, L.C.; Goh, B.H.; Lee, W.-L. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Front. Mol. Biosci. 2021, 8, 28. [Google Scholar] [CrossRef]
- Huang, Z.; Xie, N.; Illes, P.; Di Virgilio, F.; Ulrich, H.; Semyanov, A.; Verkhratsky, A.; Sperlagh, B.; Yu, S.-G.; Huang, C. From purines to purinergic signalling: Molecular functions and human diseases. Signal Transduct. Target. Ther. 2021, 6, 1–20. [Google Scholar] [CrossRef]
- Burnstock, G. Purinergic signalling. Br. J. Pharmacol. 2006, 147, S172–S181. [Google Scholar] [CrossRef]
- Burnstock, G. Introduction to purinergic signaling. In Purinergic Signaling; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–15. [Google Scholar]
- Campos-Contreras, A.d.R.; Díaz-Muñoz, M.; Vázquez-Cuevas, F.G. Purinergic signaling in the hallmarks of cancer. Cells 2020, 9, 1612. [Google Scholar] [CrossRef]
- Patergnani, S.; Danese, A.; Bouhamida, E.; Aguiari, G.; Previati, M.; Pinton, P.; Giorgi, C. Various aspects of calcium signaling in the regulation of apoptosis, autophagy, cell proliferation, and cancer. Int. J. Mol. Sci. 2020, 21, 8323. [Google Scholar] [CrossRef]
- Pellegatti, P.; Raffaghello, L.; Bianchi, G.; Piccardi, F.; Pistoia, V.; Di Virgilio, F. Increased level of extracellular ATP at tumor sites: In vivo imaging with plasma membrane luciferase. PLoS ONE 2008, 3, e2599. [Google Scholar] [CrossRef]
- Di Virgilio, F.; Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 2017, 36, 293–303. [Google Scholar] [CrossRef]
- Vultaggio-Poma, V.; Sarti, A.C.; Di Virgilio, F. Extracellular ATP: A feasible target for cancer therapy. Cells 2020, 9, 2496. [Google Scholar] [CrossRef]
- Feng, L.-L.; Cai, Y.-Q.; Zhu, M.-C.; Xing, L.-J.; Wang, X. The yin and yang functions of extracellular ATP and adenosine in tumor immunity. Cancer Cell Int. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Khalid, M.; Brisson, L.; Tariq, M.; Hao, Y.; Guibon, R.; Fromont, G.; Mortadza, S.A.S.; Mousawi, F.; Manzoor, S.; Roger, S. Carcinoma-specific expression of P2Y11 receptor and its contribution in ATP-induced purinergic signalling and cell migration in human hepatocellular carcinoma cells. Oncotarget 2017, 8, 37278. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Liu, P.; Zhang, S.; Tao, L.; Han, J. Screening pathogenic genes in oral squamous cell carcinoma based on the mRNA expression microarray data. Int. J. Mol. Med. 2018, 41, 3597–3603. [Google Scholar] [CrossRef] [Green Version]
- Suwanwela, J.; Osathanon, T. Inflammation related genes are upregulated in surgical margins of advanced stage oral squamous cell carcinoma. J. Oral Biol. Craniofacial Res. 2017, 7, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Bellefeuille, S.D.; Molle, C.M.; Gendron, F.-P. Reviewing the role of P2Y receptors in specific gastrointestinal cancers. Purinergic Signal. 2019, 15, 451–463. [Google Scholar] [CrossRef]
- Le, H.T.T.; Murugesan, A.; Ramesh, T.; Yli-Harja, O.; Saravanan, K.M.; Kandhavelu, M. Molecular interaction of HIC, an agonist of P2Y1 receptor, and its role in prostate cancer apoptosis. Int. J. Biol. Macromol. 2021, 189, 142–150. [Google Scholar] [CrossRef]
- Avanzato, D.; Genova, T.; Pla, A.F.; Bernardini, M.; Bianco, S.; Bussolati, B.; Mancardi, D.; Giraudo, E.; Maione, F.; Cassoni, P. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling. Sci. Rep. 2016, 6, 1–16. [Google Scholar] [CrossRef]
- Vinette, V.; Placet, M.; Arguin, G.; Gendron, F.-P. Multidrug resistance-associated protein 2 expression is upregulated by adenosine 5’-triphosphate in colorectal cancer cells and enhances their survival to chemotherapeutic drugs. PLoS ONE 2015, 10, e0136080. [Google Scholar] [CrossRef] [Green Version]
- Eun, S.Y.; Ko, Y.S.; Park, S.W.; Chang, K.C.; Kim, H.J. P2Y2 nucleotide receptor-mediated extracellular signal-regulated kinases and protein kinase C activation induces the invasion of highly metastatic breast cancer cells. Oncol. Rep. 2015, 34, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Qiu, Y.; Zhang, H.; Liu, Y.; You, J.; Tian, X.; Fang, W. P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells. Br. J. Cancer 2013, 109, 1666–1675. [Google Scholar] [CrossRef] [Green Version]
- Chadet, S.; Jelassi, B.; Wannous, R.; Angoulvant, D.; Chevalier, S.; Besson, P.; Roger, S. The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis 2014, 35, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Zaparte, A.; Cappellari, A.R.; Brandao, C.A.; de Souza, J.B.; Borges, T.J.; Kist, L.W.; Bogo, M.R.; Zerbini, L.F.; Pinto, L.F.R.; Glaser, T. P2Y2 receptor activation promotes esophageal cancer cells proliferation via ERK1/2 pathway. Eur. J. Pharmacol. 2021, 891, 173687. [Google Scholar] [CrossRef] [PubMed]
- Limami, Y.; Pinon, A.; Leger, D.Y.; Mousseau, Y.; Cook-Moreau, J.; Beneytout, J.-L.; Delage, C.; Liagre, B.; Simon, A. HT-29 colorectal cancer cells undergoing apoptosis overexpress COX-2 to delay ursolic acid-induced cell death. Biochimie 2011, 93, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Limami, Y.; Pinon, A.; Leger, D.Y.; Pinault, E.; Delage, C.; Beneytout, J.-L.; Simon, A.; Liagre, B. The P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells. Biochimie 2012, 94, 1754–1763. [Google Scholar] [CrossRef]
- Woods, L.T.; Jasmer, K.J.; Forti, K.M.; Shanbhag, V.C.; Camden, J.M.; Erb, L.; Petris, M.J.; Weisman, G.A. P2Y2 receptors mediate nucleotide-induced EGFR phosphorylation and stimulate proliferation and tumorigenesis of head and neck squamous cell carcinoma cell lines. Oral Oncol. 2020, 109, 104808. [Google Scholar] [CrossRef]
- Mishima, K.; Inoue, K.; Hayashi, Y. Overexpression of extracellular-signal regulated kinases on oral squamous cell carcinoma. Oral Oncol. 2002, 38, 468–474. [Google Scholar] [CrossRef]
- Kordi-Tamandani, D.; Sabers, E.; Jamali, S.; Rigi Ladiz, M. ERK and RAF1 genes: Analysis of methylation and expression profiles in patients with oral squamous cell carcinoma. Br. J. Biomed. Sci. 2014, 71, 100–103. [Google Scholar] [CrossRef]
- Prime, S.S.; Nixon, S.V.; Crane, I.J.; Stone, A.; Matthews, J.B.; Maitland, N.J.; Remnant, L.; Powell, S.K.; Game, S.M.; Scully, C. The behaviour of human oral squamous cell carcinoma in cell culture. J. Pathol. 1990, 160, 259–269. [Google Scholar] [CrossRef]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Eun, S.Y.; Lee, J.S.; Park, S.W.; Lee, J.H.; Chang, K.C.; Kim, H.J. P2Y 2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res. 2014, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Abbracchio, M.P.; Burnstock, G.; Boeynaems, J.-M.; Barnard, E.A.; Boyer, J.L.; Kennedy, C.; Knight, G.E.; Fumagalli, M.; Gachet, C.; Jacobson, K.A. International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev. 2006, 58, 281–341. [Google Scholar] [CrossRef]
- Mansfield, K.J.; Hughes, J.R. P2Y receptor modulation of ATP release in the urothelium. BioMed Res. Int. 2014. [Google Scholar] [CrossRef] [Green Version]
- Kita, M.; Ano, Y.; Inoue, A.; Aoki, J. Identification of P2Y receptors involved in oleamide-suppressing inflammatory responses in murine microglia and human dendritic cells. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ostruszka, L.J.; Leu, K.M.; Baker, L.H.; Shewach, D.S. Docetaxel Enhances S-Phase Cytotoxicity with dFdCyd Resulting in Synergy; AACR: Philadelphia, PA, USA, 2004. [Google Scholar]
- Law, L.M.; Azmi, N.; Paterson, I.C.; Ng, P.Y. P2Y Purinergic Receptor Signaling in Oral Squamous Cell Carcinoma Cell Line Sand Its Role in Proliferation and Cisplatin-Mediated Apoptosis. Sains Malaysiana 2022, 51. Available online: https://www.ukm.my/jsm/english_journals/vol51num1_2022/contentsVol51num1_2022.html (accessed on 10 September 2021).
- Abbracchio, M.P.; Boeynaems, J.M.; Boyer, J.L.; Burnstock, G.; Ceruti, S.; Fumagalli, M.; Gachet, C.; Hills, R.; Humphries, R.G.; Inoue, K.; et al. P2Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide Pharmacol. CITE 2019, 2019. [Google Scholar] [CrossRef]
- Vázquez-Cuevas, F.G.; Martínez-Ramírez, A.S.; Robles-Martínez, L.; Garay, E.; García-Carrancá, A.; Montiel, M.D.P.; Castañeda-García, C.; Arellano, R.O. Paracrine stimulation of P2X7 receptor by ATP activates a proliferative pathway in ovarian carcinoma cells. J. Cell. Biochem. 2014, 115, 1955–1966. [Google Scholar] [CrossRef]
- Alves, L.A.; de Melo Reis, R.A.; de Souza, C.A.M.; de Freitas, M.S.; Teixeira, P.C.N.; Ferreira, D.N.M.; Xavier, R.F. The P2X7 receptor: Shifting from a low-to a high-conductance channel—An enigmatic phenomenon? Biochim. Biophy. Acta (BBA) Biomembr. 2014, 1838, 2578–2587. [Google Scholar] [CrossRef] [Green Version]
- Bojanowski, K.; Lelievre, S.; Markovits, J.; Couprie, J.; Jacquemin-Sablon, A.; Larsen, A.K. Suramin is an inhibitor of DNA topoisomerase II in vitro and in Chinese hamster fibrosarcoma cells. Proc. Natl. Acad. Sci. USA 1992, 89, 3025–3029. [Google Scholar] [CrossRef] [Green Version]
- Rapaport, E. Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. J. Cell. Physiol. 1983, 114, 279–283. [Google Scholar] [CrossRef]
- Maaser, K.; Hopfner, M.; Kap, H.; Sutter, A.P.; Barthel, B.; Von Lampe, B.; Zeitz, M.; Scherubl, H. Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y2-receptors. Br. J. Cancer 2002, 86, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Okajima, F.; Akbar, M.; Tomura, H.; Narita, T.; Yamada, T.; Ohwada, S.; Morishita, Y.; Kondo, Y. Cell cycle arrest and the induction of apoptosis in pancreatic cancer cells exposed to adenosine triphosphate in vitro. Oncol. Rep. 2002, 9, 113–117. [Google Scholar] [CrossRef]
- Pathak, R.; Bhatnagar, S.; Dubey, A.K. Mechanisms underlying the opposing effects of P2Y receptors on the cell cycle. J. Recept. Signal Transduct. 2008, 28, 505–529. [Google Scholar] [CrossRef]
- Sellers, L.A.; Simon, J.; Lundahl, T.S.; Cousens, D.J.; Humphrey, P.P.A.; Barnard, E.A. Adenosine Nucleotides Acting at the Human P2Y1Receptor Stimulate Mitogen-activated Protein Kinases and Induce Apoptosis. J. Biol. Chem. 2001, 276, 16379–16390. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Costanzi, S.; Liu, Q.-Z.; Gao, Z.-G.; Jacobson, K. Activation of the P2Y1 receptor induces apoptosis and inhibits proliferation of prostate cancer cells. Biochem. Pharmacol. 2011, 82, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Bottazzi, M.E.; Zhu, X.; Böhmer, R.M.; Assoian, R.K. Regulation of P21cip1 Expression by Growth Factors and the Extracellular Matrix Reveals a Role for Transient ERK Activity in G1 Phase. J. Cell Biol. 1999, 146, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Geng, Y.H.; Wang, P.; Yang, H.; Zhou, Y.T.; Zhang, H.Q.; He, H.Y.; Fang, W.G.; Tian, X.X. Extracellular ATP promotes breast cancer invasion and chemoresistance via SOX9 signaling. Oncogene 2020, 39, 5795–5810. [Google Scholar] [CrossRef] [PubMed]
- Salo, T.; Sutinen, M.; Apu, E.H.; Sundquist, E.; Cervigne, N.K.; De Oliveira, C.E.; Akram, S.U.; Ohlmeier, S.; Suomi, F.; Eklund, L.; et al. A novel human leiomyoma tissue derived matrix for cell culture studies. BMC Cancer 2015, 15, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apu, E.H.; Akram, S.U.; Rissanen, J.; Wan, H.; Salo, T. Desmoglein 3—Influence on oral carcinoma cell migration and invasion. Exp. Cell Res. 2018, 370, 353–364. [Google Scholar]
- Demers, I.; Donkers, J.; Kremer, B.; Speel, E.J. Ex Vivo Culture Models to Indicate Therapy Response in Head and Neck Squamous Cell Carcinoma. Cells 2020, 9, 2527. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, C.C.; Aminuddin, A.; Chan, K.M.; Paterson, I.C.; Law, L.M.; Ng, P.Y. Extracellular ATP Induced S-Phase Cell Cycle Arrest via P2Y Receptor-Activated ERK Signaling in Poorly Differentiated Oral Squamous Cell Carcinoma SAS Cells. Life 2021, 11, 1170. https://doi.org/10.3390/life11111170
Lau CC, Aminuddin A, Chan KM, Paterson IC, Law LM, Ng PY. Extracellular ATP Induced S-Phase Cell Cycle Arrest via P2Y Receptor-Activated ERK Signaling in Poorly Differentiated Oral Squamous Cell Carcinoma SAS Cells. Life. 2021; 11(11):1170. https://doi.org/10.3390/life11111170
Chicago/Turabian StyleLau, Chia Chih, Amnani Aminuddin, Kok Meng Chan, Ian C. Paterson, Lok Mun Law, and Pei Yuen Ng. 2021. "Extracellular ATP Induced S-Phase Cell Cycle Arrest via P2Y Receptor-Activated ERK Signaling in Poorly Differentiated Oral Squamous Cell Carcinoma SAS Cells" Life 11, no. 11: 1170. https://doi.org/10.3390/life11111170
APA StyleLau, C. C., Aminuddin, A., Chan, K. M., Paterson, I. C., Law, L. M., & Ng, P. Y. (2021). Extracellular ATP Induced S-Phase Cell Cycle Arrest via P2Y Receptor-Activated ERK Signaling in Poorly Differentiated Oral Squamous Cell Carcinoma SAS Cells. Life, 11(11), 1170. https://doi.org/10.3390/life11111170