Optimal In-Operation Redesign of Mechanical Systems Considering Vibrations—A New Methodology Based on Frequency-Band Constraint Formulation and Efficient Sensitivity Analysis
Abstract
:1. Introduction
2. Design Optimization for In-Operation Structural Modification
2.1. Formulation and Setup of the Optimization Problem
- 1.
- minimize the change in our structural behavior, which could possibly lead to other problems,
- 2.
- avoid added mass that can often lead to lowered efficiency.
2.2. Frequency-Band Constraints
2.3. Sensitivity of Added Mass
2.4. Sensitivity Formulations of Frequency-Band Constraints
3. Numerical Validation
3.1. Two-Mass Oscillator
3.2. Gear Housing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ross, C. Strukturoptimierung mit Nebenbedingungen aus der Dynamik. Ph.D. Thesis, Technische Universität München, Munich, Germany, 1991. [Google Scholar]
- Baier, H.; Seeßelberg, C.; Specht, B. Optimierung in der Strukturmechanik; Vieweg: Braunschweig, Germany, 1994. [Google Scholar]
- Vanderplaats, G.N. Multidiscipline Design Optimization; Vanderplaats Research & Development: Colorado Springs, CO, USA, 2007. [Google Scholar]
- Bucher, I.; Braun, S. The structural modification inverse problem: An exact solution. Mech. Syst. Signal Process. 1993, 7, 217–238. [Google Scholar] [CrossRef]
- He, J. Structural modification. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2001, 359, 187. [Google Scholar] [CrossRef]
- Avitabile, P. Twenty years of structural dynamic modification—A review. Sound Vib. 2003, 37, 14–27. [Google Scholar]
- Belotti, R.; Richiedei, D. Designing auxiliary systems for the inverse eigenstructure assignment in vibrating systems. Arch. Appl. Mech. 2017, 87, 171–182. [Google Scholar] [CrossRef]
- Pritchard, J.I.; Adelman, H.M.; Haftka, R.T. Sensitivity analysis and optimization of nodal point placement for vibration reduction. J. Sound Vib. 1987, 119, 277–289. [Google Scholar] [CrossRef]
- Wehrle, E.; Palomba, I.; Vidoni, R. In-operation structural modification of planetary gear sets using design optimization methods. In Mechanism Design for Robotics; Springer International Publishing: Cham, Switzerland, 2019; pp. 395–405. [Google Scholar]
- Bernard, M.L.; Bronowicki, A.J. Modal expansion method for eigensensitivity with repeated roots. AIAA J. 1994, 32, 1500–1506. [Google Scholar] [CrossRef]
- Choi, K.K.; Kim, N.H. Structural Sensitivity Analysis and Optimization 1: Linear Systems; Springer: New York, NY, USA, 2004. [Google Scholar]
- Haug, E.J.; Arora, J.S. Design sensitivity analysis of elastic mechanical systems. Comput. Methods Appl. Mech. Eng. 1978, 15, 35–62. [Google Scholar] [CrossRef]
- van Keulen, F.; Haftka, R.; Kim, N. Review of options for structural design sensitivity analysis—Part 1: Linear systems. Comput. Methods Appl. Mech. Eng. 2005, 194, 3213–3243. [Google Scholar] [CrossRef]
- Wehrle, E.J.; Concli, F.; Cortese, L.; Vidoni, R. Design optimization of planetary gear trains under dynamic constraints and parameter uncertainty. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Prague, Czech Republic, 19–22 June 2017. [Google Scholar]
- Wehrle, E.; Palomba, I.; Vidoni, R. Vibrational behavior of epicyclic gear trains with lumped-parameter models: Analysis and design optimization under uncertainty. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2018, Quebec City, QC, Canada, 26–29 August 2018. [Google Scholar]
- Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, D. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Haftka, R.T.; Gürdal, Z. Elements of Structural Optimization, 3rd ed.; Kluwer: Alphen aan den Rijn, The Netherlands, 1992. [Google Scholar]
- Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Dadvand, P. A Framework for Developing Finite Element Codes for Multi-Disciplinary Applications. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2007. [Google Scholar]
- Dadvand, P.; Rossi, R.; Onate, E. An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch. Comput. Methods Eng. 2010, 17, 253–297. [Google Scholar] [CrossRef]
- Wehrle, E.J. Design Optimization of Lightweight Space Frame Structures Considering Crashworthiness and Parameter Uncertainty. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2015. [Google Scholar]
- Wehrle, E.J.; Xu, Q.; Baier, H. Investigation, optimal design and uncertainty analysis of crash-absorbing extruded aluminium structures. Procedia CIRP 2014, 18, 27–32. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol | Start Value | Optimal Value |
---|---|---|---|
Design variable 1 | 0 | 0.0891 | |
Design variable 2 | 0 | 0.0 | |
Objective function | f | 0.0 | 0.0891 |
Inequality constraint 1 | −1,000,000.0 | −1,000,000.0 | |
Inequality constraint 2 | 0.6705 | −0.2124 | |
Inequality constraint 3 | −0.7693 | −1.1476 | |
Inequality constraint 4 | −2.6517 | −2.9165 | |
Inequality constraint 5 | −1,000,000.0 | −1,000,000.0 | |
Inequality constraint 6 | −1,000,000.0 | −1,000,000.0 | |
Inequality constraint 7 | −1,000,000.0 | −1,000,000.0 | |
Inequality constraint 8 | 0.8529 | −0.0014 |
Property | Symbol | Value | Units |
---|---|---|---|
Density | ρ | ||
Young’s modulus | E | 206,900 | |
Poisson’s ratio | 0.29 |
Frequency Range k | ||
---|---|---|
1 | ||
2 | 1222 | 1292 |
3 | 2517 | 2691 |
4 | 2881 | 3635 |
5 | 6776 | 7278 |
6 | 7574 | 9311 |
7 | 9339 | 9907 |
Parameter | Symbol | Start Value | Optimal Value | Unit |
---|---|---|---|---|
Objective | f | 0.0 | 52.01 | g |
Maximum constraint | 0.9458 | 0.0005 | − | |
Eigenfrequency 1 | 6513.80 | 6172.81 | Hz | |
Eigenfrequency 2 | 6519.89 | 6273.29 | Hz | |
Eigenfrequency 3 | 7245.71 | 6775.99 | Hz | |
Eigenfrequency 4 | 7795.97 | 7574.93 | Hz | |
Eigenfrequency 5 | 10,579.3 | 9920.87 | Hz | |
Eigenfrequency 6 | 12,260.8 | 11,013.2 | Hz |
Parameter | Symbol | Start Value | Optimal Value |
---|---|---|---|
Design variable 1 | 0.0 | 0.192 | |
Design variable 2 | 0.0 | 0.733 | |
Design variable 3 | 0.0 | 0.080 | |
Design variable 4 | 0.0 | 0.168 | |
Design variable 6 | 0.0 | 0.051 | |
Design variable 8 | 0.0 | 0.248 | |
Design variable 13 | 0.0 | 0.164 | |
Design variable 928 | 0.0 | 2.602 | |
Design variable 997 | 0.0 | 10.00 | |
Design variable 1075 | 0.0 | 10.00 | |
Design variable 1161 | 0.0 | 0.446 | |
Design variable 4731 | 0.0 | 7.287 | |
Design variable 4757 | 0.0 | 10.00 | |
Design variable 4809 | 0.0 | 10.00 | |
Design variable 6957 | 0.0 | 0.005 | |
Design variable 7806 | 0.0 | 0.005 | |
Design variable 8024 | 0.0 | 0.033 | |
All other design variables | 0.0 | 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehrle, E.; Gufler, V.; Vidoni, R. Optimal In-Operation Redesign of Mechanical Systems Considering Vibrations—A New Methodology Based on Frequency-Band Constraint Formulation and Efficient Sensitivity Analysis. Machines 2020, 8, 11. https://doi.org/10.3390/machines8010011
Wehrle E, Gufler V, Vidoni R. Optimal In-Operation Redesign of Mechanical Systems Considering Vibrations—A New Methodology Based on Frequency-Band Constraint Formulation and Efficient Sensitivity Analysis. Machines. 2020; 8(1):11. https://doi.org/10.3390/machines8010011
Chicago/Turabian StyleWehrle, Erich, Veit Gufler, and Renato Vidoni. 2020. "Optimal In-Operation Redesign of Mechanical Systems Considering Vibrations—A New Methodology Based on Frequency-Band Constraint Formulation and Efficient Sensitivity Analysis" Machines 8, no. 1: 11. https://doi.org/10.3390/machines8010011
APA StyleWehrle, E., Gufler, V., & Vidoni, R. (2020). Optimal In-Operation Redesign of Mechanical Systems Considering Vibrations—A New Methodology Based on Frequency-Band Constraint Formulation and Efficient Sensitivity Analysis. Machines, 8(1), 11. https://doi.org/10.3390/machines8010011