# Experimental Characterization of the Coupling Stage of a Two-Stage Planetary Gearbox in Variable Operational Conditions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Gearbox Design

## 3. Test-Bed Design

## 4. Experimental Results

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Mbarek, A.; Del Rincon, A.F.; Hammami, A.; Iglesias, M.; Chaari, F.; Viadero, F.; Haddar, M. Comparison of experimental and operational modal analysis on a back to back planetary gear. Mech. Mach. Theory
**2018**, 124, 226–247. [Google Scholar] [CrossRef] - Chen, X.; Cheng, G.; Li, H.; Li, Y. Fault identification method for planetary gear based on DT-CWT threshold denoising and LE. J. Mech. Sci. Technol.
**2017**, 31, 1035–1047. [Google Scholar] [CrossRef] - Sun, R.; Yang, Z.; Chen, X.; Tian, S.; Xie, Y. Gear fault diagnosis based on the structured sparsity time-frequency analysis. Mech. Syst. Signal Process.
**2018**, 102, 346–363. [Google Scholar] [CrossRef] - Zhu, C.; Chen, S.; Liu, H.; Huang, H.; Li, G.; Ma, F. Dynamic analysis of the drive train of a wind turbine based upon the measured load spectrum. J. Mech. Sci. Technol.
**2014**, 28, 2033–2040. [Google Scholar] [CrossRef] - Heidari Bafroui, H.; Ohadi, A. Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection under varying speed conditions. Neurocomputing
**2014**, 133, 437–445. [Google Scholar] [CrossRef] - Chen, X.; Feng, Z. Iterative generalized time–frequency reassignment for planetary gearbox fault diagnosis under nonstationary conditions. Mech. Syst. Signal Process.
**2016**, 80, 429–444. [Google Scholar] [CrossRef] - Liu, W.; Shuai, Z.; Guo, Y.; Wang, D. Modal properties of a two-stage planetary gear system with sliding friction and elastic continuum ring gear. Mech. Mach. Theory
**2019**, 135, 251–270. [Google Scholar] [CrossRef] - Kong, Y.; Wang, T.; Chu, F. Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear. Renew. Energy
**2019**, 132, 1373–1388. [Google Scholar] [CrossRef] - Li, Y.; Cheng, G.; Liu, C.; Chen, X. Study on planetary gear fault diagnosis based on variational mode decomposition and deep neural networks. Measurement
**2018**, 130, 94–104. [Google Scholar] [CrossRef] - Li, Y.; Ding, K.; He, G.; Yang, X. Vibration modulation sidebands mechanisms of equally-spaced planetary gear train with a floating sun gear. Mech. Syst. Signal Process.
**2019**, 129, 70–90. [Google Scholar] [CrossRef] - Zghal, B.; Graja, O.; Dziedziech, K.; Chaari, F.; Jablonski, A.; Barszcz, T.; Haddar, M. A new modeling of planetary gear set to predict modulation phenomenon. Mech. Syst. Signal Process.
**2019**, 127, 234–261. [Google Scholar] [CrossRef] - Tsai, S.J.; Huang, G.L.; Ye, S.Y. Gear meshing analysis of planetary gear sets with a floating sun gear. Mech. Mach. Theory
**2015**, 84, 145–163. [Google Scholar] [CrossRef] - Shen, Z.; Qiao, B.; Yang, L.; Luo, W.; Chen, X. Evaluating the influence of tooth surface wear on TVMS of planetary gear set. Mech. Mach. Theory
**2019**, 136, 206–223. [Google Scholar] [CrossRef] - Feki, N.; Karray, M.; Khabou, M.T.; Chaari, F.; Haddar, M. Frequency analysis of a two-stage planetary gearbox using two different methodologies. C. R. Mec.
**2017**, 345, 832–843. [Google Scholar] [CrossRef] - Park, J.; Hamadache, M.; Ha, J.M.; Kim, Y.; Na, K.; Youn, B.D. A positive energy residual (PER) based planetary gear fault detection method under variable speed conditions. Mech. Syst. Signal Process.
**2019**, 117, 347–360. [Google Scholar] [CrossRef] - Park, J.; Kim, Y.; Na, K.; Youn, B.D. Variance of energy residual (VER): An efficient method for planetary gear fault detection under variable-speed conditions. J. Sound Vib.
**2019**, 453, 253–267. [Google Scholar] [CrossRef] - Martins, R.C.; Fernandes, C.M.C.G.; Seabra, J.H.O. Evaluation of bearing, gears and gearboxes performance with different wind turbine gear oils. Friction
**2015**, 3, 275–286. [Google Scholar] [CrossRef][Green Version] - Gani, B.; Ceccarelli, M.; Carbone, G. Design and numerical characterization of a new planetary transmission. Int. J. Innov. Technol. Res.
**2014**, 2, 735–739. [Google Scholar]

**Figure 1.**Structure diagram of the two-stage planetary gearbox (${C}^{\left(n\right)}$- carrier, ${S}^{\left(n\right)}$- sun gear, ${P}^{\left(n\right)}$- planet gears, ${R}^{\left(n\right)}$ is ring gear; with $n=1$ for the input planetary train and $n=2$ for the output planetary train).

**Figure 3.**Prototype of the two-stage planetary gearbox under study (${C}^{\left(n\right)}$- carrier, ${S}^{\left(n\right)}$- sun gear, ${P}^{\left(n\right)}$- planet gears, ${R}^{\left(n\right)}$ - ring gear; with $n=1$ for the input gear train and $n=2$ for the output gear train).

**Figure 5.**Test-bed for experiments on rotating machinery: (

**a**) schematic diagram; (

**b**) experimental setup.

**Figure 6.**Waveforms at 120 rpm operation speed: (

**a**) dynamic torques; (

**b**) angular speed of the output shaft;

**(c)**radial vibrations on the input shaft; (

**d**) radial vibrations on the output shaft.

**Figure 7.**Waveforms at 210 rpm operation speed: (

**a**) dynamic torques; (

**b**) angular speed of the output shaft; (

**c**) radial vibrations on the input shaft; (

**d**) radial vibrations on the output shaft.

**Table 1.**Design parameters of the Laboratory of Robot Mechatronics (LARM2) planetary gearbox prototype.

Element | Number of Teeth, N | Pitch Radius, r [mm] |
---|---|---|

Input gear set | ||

Sun gear | 60 | 30 |

Planet gear | 20 | 10 |

Ring gear | 100 | 50 |

Carrier | 40 | |

Output gear set | ||

Sun gear | 12 | 6 |

Planet gear | 44 | 22 |

Ring gear | 100 | 50 |

Carrier | 28 | |

Module | 1 | |

Pressure angle | 20° |

Equipment | Model | Quantity |
---|---|---|

AC Motor | Cantoni Sh-80-2B | 1 |

Frequency inverter | Mitsubishi FR-E500 | 1 |

Accelerometers | ADXL-321J | 2 |

Kistler 8305B | 1 | |

Torque sensors | CD1050 | 1 |

CD1095 | 1 | |

Encoder | ENC1J-D16-L00128L | 1 |

Data acquisition system | NI USB 6009 | 1 |

NI USB 6001 | 1 | |

Phidget 1065 | 1 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

González-Cruz, C.A.; Ceccarelli, M.
Experimental Characterization of the Coupling Stage of a Two-Stage Planetary Gearbox in Variable Operational Conditions. *Machines* **2019**, *7*, 45.
https://doi.org/10.3390/machines7020045

**AMA Style**

González-Cruz CA, Ceccarelli M.
Experimental Characterization of the Coupling Stage of a Two-Stage Planetary Gearbox in Variable Operational Conditions. *Machines*. 2019; 7(2):45.
https://doi.org/10.3390/machines7020045

**Chicago/Turabian Style**

González-Cruz, Claudia Aide, and Marco Ceccarelli.
2019. "Experimental Characterization of the Coupling Stage of a Two-Stage Planetary Gearbox in Variable Operational Conditions" *Machines* 7, no. 2: 45.
https://doi.org/10.3390/machines7020045