Limit Cycles in Nonlinear Systems with Fractional Order Plants
Abstract
:1. Introduction
2. Fractional Order Dynamics
3. Determination of Stability and Limit Cycles in Nonlinear Systems
3.1. Describing Function Method
3.2. Tsypkin’s Method
n | ω (rad/s) | n | ω (rad/s) |
---|---|---|---|
1 | 0.6450 | 9 | 0.6359 |
3 | 0.6392 | 11 | 0.6357 |
5 | 0.6370 | 13 | 0.6356 |
7 | 0.6362 | 15 | 0.6356 |
n | ω (rad/s) | n | ω (rad/s) |
---|---|---|---|
1 | 3.4641 | 17 | 2.9578 |
3 | 3.2003 | 23 | 2.9398 |
5 | 3.0995 | 35 | 2.9218 |
7 | 3.0471 | 51 | 2.9107 |
9 | 3.0152 | 71 | 2.9038 |
11 | 2.9938 | 91 | 2.8998 |
13 | 2.9784 | 101 | 2.8985 |
3.2.1. Analysis of Limit Cycle Existence According to Compensator Gain
3.2.2. Analysis of Limit Cycle Existence According to Fractional Order Dynamics
α (Fractional Order) | ω rad/s (The Frequency at arg[G(jω)] = −π) | a (The Amplitude at arg[G(jω)] = −π) |
---|---|---|
0.779 | 1.4252 | a1 = 1.141, a2 = 1.141 |
1.1 | 0.8541 | a1 = 1.0176, a2 = 5.407 |
1.2 | 0.7265 | a1 = 1.008, a2 = 7.616 |
1.3 | 0.6128 | a1 = 1.004, a2 = 10.946 |
1.4 | 0.5095 | a1 = 1.001, a2 = 16.294 |
Δt | ω rad/s (Solution from = −πδ / 2h) | ω rad/s (Solution from = πδ / 2h) |
---|---|---|
0.4 | 0.222 | 0.216 |
0.6 | 0.577 | 0.61 |
0.8 | 0.736 | 0.835 |
1 | 0.818 | 0.983 |
1.2 | 0.861 | 1.083 |
1.4 | 0.881 | 1.146 |
1.6 | 0.886 | 1.177 |
1.8 | 0.881 | 1.181 |
2.0 | 0.871 | 1.165 |
2.2 | 0.856 | 1.132 |
2.4 | 0.838 | 1.088 |
2.6 | 0.82 | 1.037 |
2.8 | 0.8 | 0.98 |
3.14 | 0.767 | 0.878 |
3.2 | 0.761 | 0.859 |
3.4 | 0.741 | 0.797 |
3.6 | 0.723 | 0.735 |
3.8 | 0.704 | 0.673 |
4 | 0.687 | 0.612 |
K | ω | Δt | θ = ωΔt |
---|---|---|---|
1 | 0.7177 | 3.656 | 2.623 |
0.2766 | 0.4308 | 0.119 | |
0.6 | 0.7142 | 3.055 | 2.181 |
0.5712 | 1.044 | 0.596 | |
0.55 | 0.7204 | 2.664 | 1.919 |
0.6103 | 1.246 | 0.760 | |
0.52 | 0.7152 | 2.438 | 1.7437 |
0.6411 | 1.444 | 0.9257 | |
0.49 | No solution. System is stable |
K | Method | ω | Δt | θ = ωΔt |
---|---|---|---|---|
1 | Simulation | 0.7173 | 3.65 | 2.618 |
- | - | - | ||
DF | 0.7265 | 3.57 | 2.59 | |
- | - | - | ||
A Locus | 0.7177 | 3.656 | 2.623 | |
0.2766 | 0.4308 | 0.119 | ||
0.6 | Simulation | 0.7306 | 2.9 | 2.118 |
- | - | - | ||
DF | 0.7265 | 2.88 | 2.09 | |
- | - | - | ||
A Locus | 0.7142 | 3.055 | 2.181 | |
0.5712 | 1.044 | 0.596 | ||
0.55 | Simulation | 0.7222 | 2.7 | 1.949 |
- | - | - | ||
DF | 0.7265 | 2.61 | 1.896 | |
- | - | - | ||
A Locus | 0.7204 | 2.664 | 1.919 | |
0.6103 | 1.246 | 0.760 | ||
0.52 | Simulation | 0.7140 | 2.4 | 1.713 |
- | - | - | ||
DF | No solution. System is stable. | |||
A Locus | 0.7152 | 2.438 | 1.743 | |
0.6411 | 1.444 | 0.9257 | ||
0.49 | Simulation | No limit cycle. System is stable. | ||
DF | No solution. System is stable. | |||
A Locus | No solution. System is stable. |
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Sun, H.; Song, X.; Chen, Y.Q. A class of fractional order dynamic systems with fuzzy order. In Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 6–9 July 2010; pp. 197–201.
- Xue, D.; Chen, Y.Q. A comparative introduction of four fractional order controllers. In Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, 10–14 June 2002; pp. 3228–3235.
- Oustaloup, A.; Melchior, P.; Lanusse, P.; Cois, O.; Dancla, F. The CRONE toolbox for MATLAB. In Proceedings of the 2000 IEEE International Symposium on Computer Aided Control System Design, Anchorage, AK, USA, 25–27 September 2000; pp. 190–195.
- Valerio, D.; da Costa, J.S. Ninteger: A non-integer control toolbox for Matlab. In Proceedings of the 1st IFAC Workshop on Fractional Differentiation and Its Applications, Bordeaux, France, 19–21July 2004.
- Tepljakov, A.A.; Petlenkov, E.; Belikov, J. FOMCON: Fractional-order modeling and control toolbox for Matlab. In Proceedings of the 18th International Conference, Mixed Design of Integrated Circuits and Systems, Gliwice, Poland, 16–18 June 2011; pp. 684–689.
- Xue, D.; Chen, Y.Q.; Atherton, D.P. Feedback Control Systems—Analysis and Design with MATLAB 6; Springer-Verlag: London, UK, 2002. [Google Scholar]
- Podlubny, I. Fractional-order systems and PIλDμ controllers. IEEE Trans. Autom. Control 1999, 44, 208–214. [Google Scholar] [CrossRef]
- Sabatier, J.; Poullain, S.; Latteux, P.; Thomas, J.L.; Oustaloup, A. Robust speed control of a low damped electromechanical system based on CRONE control: Application to a four mass experimental test bench. Nonlinear Dyn. 2004, 38, 383–400. [Google Scholar]
- Valério, D.; da Costa, J.S. Time domain implementation of fractional order controllers. IEEE Proc. Control Theory Appl. 2005, 152, 539–552. [Google Scholar]
- Machado, J. Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. 2001, 4, 47–66. [Google Scholar]
- Monje, C.A.; Vinagre, B.M.; Feliu, V. Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 2008, 16, 798–812. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Ahn, H.S.; Podlubny, I. Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Process. 2006, 86, 2611–2618. [Google Scholar] [CrossRef]
- Tan, N.; Ozguven, O.F.; Ozyetkin, M.M. Robust stability analysis of fractional order interval polynomials. ISA Trans. 2009, 48, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Atherton, D.P. An Introduction to Nonlinearity in Control Systems. Ventus Publishing Aps., 2011. Available online: http://bookboon.com/en/an-introduction-to-nonlinearity-in-control-systems-ebook (accessed on 31 March 2014).
- Atherton, D.P. Nonlinear Control Engineering: Describing Function Analysis and Design; Van Nostrand Reinhold: London, UK, 1975. [Google Scholar]
- Atherton, D.P. Stability of Nonlinear Systems; Research Studies Press, John Wiley: Chichester, NH, USA, 1981. [Google Scholar]
- Tsypkin, Y.Z. Relay Control Systems; Cambridge University Press: England, UK, 1984. [Google Scholar]
- Das, S. Functional Fractional Calculus for System Identification and Control; Springer-Verlag: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Nonnenmacher, T.F.; Glöckle, W.G. A fractional model for mechanical stress relaxation. Philos. Mag. Lett. 1991, 64, 89–93. [Google Scholar] [CrossRef]
- Westerlund, S.; Ekstam, L. Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 826–839. [Google Scholar] [CrossRef]
- Bagley, R.L.; Calico, R.A. Fractional order state equations for the control of viscoelastic structures. J. Guid. Control Dyn. 1991, 14, 304–311. [Google Scholar] [CrossRef]
- Skaar, S.B.; Michel, A.N.; Miller, R.K. Stability of viscoelastic control systems. IEEE Trans. Autom. Control 1988, 33, 348–357. [Google Scholar] [CrossRef]
- Ichise, M.; Nagayanagi, Y.; Kojima, T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 1971, 33, 253–265. [Google Scholar] [CrossRef]
- Hartley, T.T.; Lorenzo, C.F. Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 2002, 29, 201–233. [Google Scholar] [CrossRef]
- Sun, H.; Abdelwahab, A.; Onaral, B. Linear Approximation of transfer function with a pole of fractional power. IEEE Trans. Autom. Control 1984, 29, 441–444. [Google Scholar] [CrossRef]
- Mandelbrot, B. Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans. Inf. Theory 1967, 13, 289–298. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Bhargava, V.; West, B.J.; Mandell, A.J. On the mechanism of cardiac electrical stability. Biophys. J. 1985, 48, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: CT, USA, 2006. [Google Scholar]
- Hartley, T.T.; Lorenzo, C.F.; Qammar, H.K. Chaos in a fractional order Chua system. IEEE Trans. Circuits Syst. I 1995, 42, 485–490. [Google Scholar] [CrossRef]
- Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer: London; New York, 2010. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Krajewski, W.; Viaro, U. A method for the integer-order approximation of fractional-order systems. J. Frankl. Inst. 2014, 351, 555–564. [Google Scholar] [CrossRef]
- Vinagre, B.M.; Podlubny, I.; Herńandez, A.; Feliu, V. Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 2000, 3, 231–248. [Google Scholar]
- Chen, Y.Q.; Petráš, I.; Xue, D. Fractional order control—A tutorial. In Proceedings of the 2009 American Control Conference, Hyatt Regency Riverfront, St. Louis, MO, USA, 10–12 June 2009; pp. 1397–1411.
- Krishna, B.T. Studies on fractional order differentiators and integrators: A survey. Signal Process. 2011, 91, 386–426. [Google Scholar] [CrossRef]
- Djouambi, A.; Charef, A.; Voda, A. Numerical Simulation and Identification of Fractional Systems using Digital Adjustable Fractional Order Integrator. In Proceedings of the 2013 European Control Conference (ECC), Zürich, Switzerland, 17–19 July 2013; pp. 2615–2620.
- Oustaloup, A.; Levron, F.; Mathieu, B.; Nanot, F.M. Frequency band complex noninteger differentiator: Characterization and synthesis. IEEE Trans. Circuit Syst. I Fundam. Theory Appl. 2000, 47, 25–39. [Google Scholar] [CrossRef]
- Carlson, G.E.; Halijak, C.A. Approximation of fractional capacitors (1/s)1/n by a regular Newton process. IEEE Trans. Circuit Theory 1964, 11, 210–213. [Google Scholar] [CrossRef]
- Matsuda, K.; Fujii, H. H∞-optimized wave-absorbing control: Analytical and experimental results. J. Guid. Control Dyn. 1993, 16, 1146–1153. [Google Scholar] [CrossRef]
- Charef, A.; Sun, H.H.; Tsao, Y.Y.; Onaral, B. Fractal system as represented by singularity function. IEEE Trans. Autom. Control 1992, 37, 1465–1470. [Google Scholar] [CrossRef]
- Duarte, V.; Costa, J.S. Time-domain implementations of non-integer order controllers. In Proceedings of the Controlo 2002, Aveiro, Portugal, 5–7 September 2002; pp. 353–358.
- Ozyetkin, M.M.; Yeroglu, C.; Tan, N.; Tagluk, M.E. Design of PI and PID controllers for fractional order time delay systems. In Proceedings of the 9th IFAC workshop on Time Delay Systems, Prague, Czech, 7–9 June 2010.
- Atherton, D.P. Early developments in nonlinear control. IEEE Control Syst. 1996, 16, 34–43. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Atherton, D.P.; Tan, N.; Yeroglu, C.; Kavuran, G.; Yüce, A. Limit Cycles in Nonlinear Systems with Fractional Order Plants. Machines 2014, 2, 176-201. https://doi.org/10.3390/machines2030176
Atherton DP, Tan N, Yeroglu C, Kavuran G, Yüce A. Limit Cycles in Nonlinear Systems with Fractional Order Plants. Machines. 2014; 2(3):176-201. https://doi.org/10.3390/machines2030176
Chicago/Turabian StyleAtherton, Derek P., Nusret Tan, Celaleddin Yeroglu, Gürkan Kavuran, and Ali Yüce. 2014. "Limit Cycles in Nonlinear Systems with Fractional Order Plants" Machines 2, no. 3: 176-201. https://doi.org/10.3390/machines2030176
APA StyleAtherton, D. P., Tan, N., Yeroglu, C., Kavuran, G., & Yüce, A. (2014). Limit Cycles in Nonlinear Systems with Fractional Order Plants. Machines, 2(3), 176-201. https://doi.org/10.3390/machines2030176