A Contemporary Review of Collaborative Robotics Employed in Manufacturing Finishing Operations: Recent Progress and Future Directions
Abstract
1. Introduction
2. Human–Robot Collaboration for Finishing Operations
2.1. Operation Parameter Setting and Control
2.2. Tool Path Planning and Trajectory Generation
2.3. Human Factors
2.4. Frameworks for Cobotic Safety
3. Discussions and Future Directions
3.1. Rapid Prototyping and Wider Additive Layer Manufacturing Technologies
3.2. Integrated Multi-Robot Collaborative System
3.3. Safety in Robotics Finishing Operations
3.4. Towards Fully Automated System
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
ALM | Additive Layer Manufacture |
AHP | Analytic Hierarchy Process |
APIs | Application Programming Interfaces |
AR | Augmented Reality |
DT | Digital Twin |
FFT | Fast Fourier Transforms |
HRC | Human Robotic Collaboration |
MILP | Mixed Integer Linear Program |
MSD | Musculoskeletal Disease |
NURBS | Non-Uniform Rational B-Spline |
ROS | Robot Operating System |
PbD | Programming by Demonstration |
RTM | Rapid Tool Manufacture |
SMC | Sliding Mode Control |
References
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 2nd ed.; Addison-Wesley Publishing Company, Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Westerlund, L. The Extended Arm of Man—A History of the Industrial Robot; Informationsförlaget: Stockholm, Sweden, 2000. [Google Scholar]
- Chiriatti, G.; Ciccarelli, M.; Forlini, M.; Franchini, M.; Palmieri, G.; Papetti, A.; Germani, M. Human-Centered Design of a Collaborative Robotic System for the Shoe-Polishing Process. Machines 2022, 10, 1082. [Google Scholar] [CrossRef]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A glimpse. Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Peshkin, M.; Colgate, J.E. Cobots. Ind. Robot 1999, 26, 335–341. [Google Scholar] [CrossRef]
- Zanchettin, A.M.; Ceriani, N.M.; Rocco, P.; Ding, H.; Matthias, B. Safety in human-robot collaborative manufacturing environments: Metrics and control. IEEE Trans. Autom. Sci. Eng. 2015, 13, 882–893. [Google Scholar] [CrossRef]
- Djuric, A.M.; Urbanic, R.J.; Rickli, J.L. A framework for collaborative robot (Cobot) integration in advanced manufacturing systems. SAE Int. J. Mater. Manuf. 2016, 9, 457–464. [Google Scholar] [CrossRef]
- Keshvarparast, A.; Battini, D.; Battaia, O.; Pirayesh, A. Collaborative robots in manufacturing and assembly systems: Literature review and future research agenda. J. Intell. Manuf. 2024, 35, 2065–2118. [Google Scholar] [CrossRef]
- Rahman, M.M.; Khatun, F.; Jahan, I.; Devnath, R.; Bhuiyan, M.A.A. Cobotics: The Evolving Roles and Prospects of Next-Generation Collaborative Robots in Industry 5.0. J. Robot. 2024, 2024, 2918089. [Google Scholar] [CrossRef]
- Akundi, A.; Euresti, D.; Luna, S.; Ankobiah, W.; Lopes, A.; Edinbarough, I. State of Industry 5.0—Analysis and identification of current research trends. Appl. Syst. Innov. 2022, 5, 27. [Google Scholar] [CrossRef]
- Accorsi, R.; Tufano, A.; Gallo, A.; Galizia, F.G.; Cocchi, G.; Ronzoni, M.; Abbate, A.; Manzini, R. An application of collaborative robots in a food production facility. Procedia Manuf. 2019, 38, 341–348. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J. Practical Use of Collaborative Robots in Packing Tasks. In Proceedings of the 11th International Conference on Engineering, Project, and Production Management (EPPM), Białystok, Poland, 20–21 September 2021. [Google Scholar]
- Wang, Q.; Cheng, Y.; Jiao, W.; Johnson, M.T.; Zhang, Y. Virtual reality human-robot collaborative welding: A case study of weaving gas tungsten arc welding. J. Manuf. Process. 2019, 48, 210–217. [Google Scholar] [CrossRef]
- Inkulu, A.K.; Bahubalendruni, M.R.; Dara, A.; SankaranarayanaSamy, K. Challenges and opportunities in human robot collaboration context of Industry 4.0—A state of the art review. Ind. Robot 2022, 49, 226–239. [Google Scholar] [CrossRef]
- Surdilovic, D.; Schreck, G.; Schmidt, U. Development of collaborative robots Cobots for flexible human-integrated assembly automation. In Proceedings of the ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), Munich, Germany, 7–9 June 2010; pp. 1–8. [Google Scholar]
- Malik, A.A.; Bilberg, A. Collaborative robots in assembly: A practical approach for tasks distribution. Procedia CIRP 2019, 81, 665–670. [Google Scholar] [CrossRef]
- Gambao, E.; Hernando, M.; Surdilovic, D. A new generation of collaborative robots for material handling. In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC) 2012, Eindhoven, The Netherlands, 26–29 June 2012; IAARC Publications: Oulu, Finland, 2012; Volume 29. [Google Scholar]
- Alebooyeh, M.; Wang, B.; Urbanic, R.J.; Djuric, A.; Kalami, H. Investigating Collaborative Robot Gripper Configurations for Simple Fabric Pick and Place Tasks. SAE Tech. Pap. 2019, 11. [Google Scholar] [CrossRef]
- Grau, A.; Indri, M.; Bello, L.L.; Sauter, T. Robots in industry: The past, present, and future of a growing collaboration with humans. IEEE Ind. Electron. Mag. 2020, 15, 50–61. [Google Scholar] [CrossRef]
- Bakopoulou, K.; Michalos, G.; Mparis, K.; Gkournelos, C.; Dimitropoulos, N.; Makris, S. A Human Robot Collaborative Cell for automating NDT inspection processes. Procedia CIRP 2022, 115, 214–219. [Google Scholar] [CrossRef]
- Syberfeldt, A.; Ekblom, T. Improved automatic quality inspections through the integration of state-of-the-art machine vision and collaborative robots. In Advances in Manufacturing Technology XXXIII, Proceedings of the 17th International Conference on Manufacturing Research, incorporating the 34th National Conference on Manufacturing Research, Belfast, UK, 10–12 September 2019; IOS Press: Amsterdam, The Netherlands; Queen’s University: Belfast, UK, 2019; Volume 9, pp. 107–112. [Google Scholar] [CrossRef]
- Magalhaes, P.; Ferreira, N. Inspection Application in an Industrial Environment with Collaborative Robots. Automation 2022, 3, 258–268. [Google Scholar] [CrossRef]
- Brito, T.; Queiroz, J.; Piardi, L.; Fernandes, L.A.; Lima, J.; Leitão, P. A machine learning approach for collaborative robot smart manufacturing inspection for quality control systems. Procedia Manuf. 2020, 51, 11–18. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, K. Intelligence-Assisted Cobots in Smart Manufacturing. In Advanced Computational Methods in Mechanical and Materials Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 19–41. [Google Scholar]
- Ding, L.; Matthews, J. A contemporary study into the application of neural network techniques employed to automate CAD/CAM integration for die manufacture. Comput. Ind. Eng. 2009, 57, 1457–1471. [Google Scholar] [CrossRef]
- Hashimoto, F.; Chaudhari, R.G.; Melkote, S.N. Characteristics and performance of surfaces created by various finishing methods. Procedia CIRP 2016, 45, 1–6. [Google Scholar] [CrossRef]
- FEPA Standards 42–1:2006; Grains of Fused Aluminium Oxide, Silicon Carbide and Other Abrasive Materials for Bonded Abrasives and for General Applications MACROGRITS F4 to F200. Federation of European Producers of Abrasives: Paris, France, 2006.
- ISO 8486; International Standard. Bonded Abrasives—Determination and Designation of Grain Size Distribution. Parts 1 and 2. Second Edition 2007-08-01; ISO: Geneva, Switzerland, 2007.
- Li, J.; Zhang, T.; Liu, X.; Guan, Y.; Wang, D. A Survey of Robotic Polishing. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 2125–2132. [Google Scholar]
- Sabourin, M.; Paquet, F.; Hazel, B.; Côté, J.; Mongenot, P. Robotic Approach to Improve Turbine Surface Finish. In Proceedings of the 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 5–7 October 2010; pp. 1–6. [Google Scholar]
- Wan, Y.H.; Wang, G. Polishing robot: Status and outlook. Adv. Mater. Res. 2009, 69, 311–315. [Google Scholar] [CrossRef]
- Dawande, M.W.; Geismar, H.N.; Sethi, S.P.; Sriskandarajah, C. Throughput Optimization in Robotic Cells; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; Volume 101. [Google Scholar]
- Zhu, W.L.; Beaucamp, A. Compliant grinding and polishing: A review. Int. J. Mach. Tools Manuf. 2020, 158, 103634. [Google Scholar] [CrossRef]
- Nagata, F.; Hase, T.; Haga, Z.; Omoto, M.; Watanabe, K. CAD/CAM-based position/force controller for a mold polishing robot. Mechatronics 2007, 17, 207–216. [Google Scholar] [CrossRef]
- Ke, X.; Yu, Y.; Li, K.; Wang, T.; Zhong, B.; Wang, Z.; Kong, L.; Guo, J.; Huang, L.; Idir, M.; et al. Review on robot-assisted polishing: Status and future trends. Robot. Comput. Integr. Manuf. 2023, 80, 102482. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, G.; Yue, X.; Zhou, K. A Review of Robot Grinding and Polishing Force Control Mode. In Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7–10 August 2022. [Google Scholar]
- Ajoudani, A.; Zanchettin, A.M.; Ivaldi, S.; Albu-Schäffer, A.; Kosuge, K.; Khatib, O. Progress, and prospects of the human–robot collaboration. Auton. Robot. 2018, 42, 957–975. [Google Scholar] [CrossRef]
- Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics 2018, 55, 248–266. [Google Scholar] [CrossRef]
- Bragança, S.; Costa, E.; Castellucci, I.; Arezes, P.M. A Brief Overview of the Use of Collaborative Robots in Industry 4.0: Human Role and Safety. In Occupational and Environmental Safety and Health. Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2019; Volume 202. [Google Scholar] [CrossRef]
- Matheson, E.; Minto, R.; Zampieri, E.G.G.; Faccio, M.; Rosati, G. Human–Robot Collaboration in Manufacturing Applications: A Review. Robotics 2019, 8, 100. [Google Scholar] [CrossRef]
- El Zaatari, S.; Marei, M.; Li, W.D.; Usman, Z. Cobot programming for collaborative industrial tasks: An overview. Robot. Auton. Syst. 2019, 116, 162–180. [Google Scholar] [CrossRef]
- Hentout, A.; Aouache, M.; Maoudj, A.; Akli, I. Human–robot interaction in industrial collaborative robotics: A literature review of the decade 2008–2017. Adv. Robot. 2019, 33, 764–799. [Google Scholar] [CrossRef]
- Knudsen, M.S.; Kaivo-Oja, J. Collaborative robots: Frontiers of current literature. J. Intell. Syst. Theory Appl. 2020, 32, 13–20. [Google Scholar] [CrossRef]
- Hashemi-Petroodi, S.E.; Thevenin, S.; Kovalev, S.; Dolgui, A. Operations management issues in design and control of hybrid human-robot collaborative manufacturing systems: A survey. Annu. Rev. Control 2020, 49, 264–276. [Google Scholar] [CrossRef]
- Vicentini, F. Terminology in safety of collaborative robotics. Robot. Comput. Integr. Manuf. 2020, 63, 101921. [Google Scholar] [CrossRef]
- Proia, S.; Carli, R.; Cavone, G.; Dotoli, M.A. Literature Review on Control Techniques for Collaborative Robotics in Industrial Applications. In Proceedings of the 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 591–596. [Google Scholar] [CrossRef]
- Gualtieri, L.; Rauch, E.; Vidoni, R. Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review. Robot. Comput. Integr. Manuf. 2021, 67, 101998. [Google Scholar] [CrossRef]
- Pinheiro, S.; Correia Simões, A.; Pinto, A.; Acker, B.B.V.; Bombeke, K.; Romero, D.; Vaz, M.; Santos, J. Ergonomics and Safety in the Design of Industrial Collaborative Robotics. Occup. Environ. Saf. Health III 2022, 406, 465–478. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Rab, S.; Suman, R. Significant applications of Cobots in the field of manufacturing. Cogn. Robot. 2022, 2, 222–233. [Google Scholar] [CrossRef]
- Kóczi, D.; Sárosi, J. The safety of collaborative robotics-a review. Ann. Fac. Eng. Hunedoara-Int. J. Eng. 2022, 202, 73–76. [Google Scholar]
- Kakinuma, Y.; Ogawa, S.; Koto, K. Robot polishing control with an active end effector based on macro-micro mechanism and the extended Preston’s law. CIRP Ann. 2022, 71, 341–344. [Google Scholar] [CrossRef]
- Lin, X.; Wu, D.; Shan, X.; Wu, G.; Cui, T.; Zhang, Y.; Hu, L.; Yu, J. Flexible CNC polishing process and surface integrity of blades. J. Mech. Sci. Technol. 2018, 326, 2735–2746. [Google Scholar] [CrossRef]
- Hong, J.; Wang, D.; Guan, Y. Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications. Robot. Comput. Integr. Manuf. 2019, 55, 65–75. [Google Scholar]
- Gani, O.; Konar, A.; Manoj, K. Experimental Study of the Impact of Various Bio Based Cutting Fluid Using Multiple Machining Characteristics during Shaping Operation. Int. J. Appl. Struct. Mech. 2022, 2, 1–7. [Google Scholar] [CrossRef]
- Waurzyniak, P. Putting Safety First in Robotic Automation. Manuf. Eng. 2016, 61–66. Available online: https://www.sme.org/technologies/articles/2016/august/putting-safety-first-robotic-automation/ (accessed on 25 February 2025).
- Kalt, E.; Monfared, R.; Jackson, M. Development of an intelligent automated polishing system. In Proceedings of the EUSPEN 16th International Conference & Exhibition, Nottingham, UK, 30 May–3 June 2016. [Google Scholar]
- Bigliardi, B.; Bottani, E.; Casella, G. Enabling technologies, application areas and impact of Industry 4.0: A bibliographic analysis. Procedia Manuf. 2020, 42, 322–326. [Google Scholar] [CrossRef]
- Health and Safety Executive (HSE). Safety in the use of abrasive wheels. In HSE Books, 2nd ed.; Health and Safety Executive: Bootle, Merseyside, 2000; ISBN -13: 978-0717617395. [Google Scholar]
- Ikeda, M.; Widmoser, F.; Stübl, G.; Zafari, S.; Sackl, A.; Pichler, A. An Interactive Workplace for Improving Human Robot Collaboration: Sketch Workpiece Interface for Fast Teaching (SWIFT). In Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing; ACM: New York, NY, USA, 2023; pp. 191–194. [Google Scholar]
- Tortorella, G.L.; Fogliatto, F.S.; Anzanello, M.J.; Vassolo, R.; Antony, J.; Otto, K.; Kagioglou, M. Learning curve applications in Industry 4.0: A scoping review. Prod. Plan. Control 2022, 35, 1099–1111. [Google Scholar] [CrossRef]
- Rubarth, D. The Cobot Puts the Finishing Touches. Int. Surf. Technol. 2022, 15, 54–57. [Google Scholar] [CrossRef]
- Collaborative Robot Market worth $11.8 billion by 2030—Exclusive Report by MarketsandMarkets™. Available online: https://www.prnewswire.com/news-releases/collaborative-robot-market-worth-11-8-billion-by-2030---exclusive-report-by-marketsandmarkets-302104347.html (accessed on 21 October 2024).
- Preston, F. The theory and design of plate glass polishing machine. J. Soc. Glass Technol. 1927, 11, 214–256. [Google Scholar]
- ISO 25178–2:2012; Geometrical Product Specifications (GPS)-Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 2012.
- Kalt, E.; Monfared, R.; Jackson, M. Towards an automated polishing system—Capturing manual polishing operations. Int. J. Res. Eng. Technol. 2016, 5, 182–192. [Google Scholar] [CrossRef]
- Ochoa, H.; Cortesão, R. Impedance Control Architecture for Robotic-Assisted Mold Polishing Based on Human Demonstration. IEEE Trans. Ind. Electron. 2022, 69, 3822–3830. [Google Scholar] [CrossRef]
- Lin, Y.H.; Liu, M.W.; Lin, P.C. Development of a grinding tool with contact-force control capability. Electronics 2022, 11, 685. [Google Scholar] [CrossRef]
- Ubeda, R.P.; Gutiérrez Rubert, S.C.; Stanisic, R.Z.; Perles Ivars, Á. Behavioural study of the force control loop used in a collaborative robot for sanding materials. Materials 2020, 14, 67. [Google Scholar] [CrossRef]
- Wang, K.; Dailami, F.; Matthews, J. Towards collaborative robotic polishing of mould and die sets. Procedia Manuf. 2019, 38, 1499–1507. [Google Scholar] [CrossRef]
- Li, J.; Guan, Y.; Bi, H.; He, Z.; Wu, W.; Hu, H.; Li, D.; Wu, W.; Li, J.; Zhang, T. Predictive surface roughness model for robotic polishing considering initial surface quality. Int. J. Adv. Manuf. Technol. 2025, 137, 2729–2741. [Google Scholar] [CrossRef]
- Guo, F.; Dai, S.; Tang, J.; Wang, X.; Li, X.; Xu, Y.; Wu, Y.; Liu, Z. Polishing parameter optimization for end-surface of chalcogenide glass fiber connector. Opt. Fiber Technol. 2017, 38, 41–45. [Google Scholar] [CrossRef]
- Zhang, R.X.; Xi, R.X.; Hu, J.; Zhao, W.S.; Fu, Y.L. Influence of process parameters on temperature field during electron beam surface polishing. Procedia CIRP 2018, 68, 200–205. [Google Scholar] [CrossRef]
- Rahi, D.K.; Dubey, A.K. Experimental modelling and optimisation of electrochemical surface grinding of hybrid metal matrix composite. Adv. Mater. Process. Technol. 2023, 10, 2214–2232. [Google Scholar] [CrossRef]
- Mitropoulos, T.; Avrampos, P.; Vosniakos, G.C. Determining favourable process parameters in computer numerically controlled polishing of metal surfaces. Int. J. Manuf. Res. 2022, 17, 310–325. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Hou, B.; Liu, H.B.; Wang, F.B. Propeller material belt grinding parameters optimisation using Taguchi technique. Int. J. Ind. Syst. Eng. 2017, 25, 1–13. [Google Scholar] [CrossRef]
- Kumar, C.R.; Omkumar, M. Optimisation of process parameters of chemical mechanical polishing of soda lime glass. Silicon 2019, 11, 407–414. [Google Scholar] [CrossRef]
- Hähnel, S.; Pini, F.; Leali, F.; Dambon, O.; Bergs, T.; Bletek, T. Reconfigurable robotic solution for effective finishing of complex surfaces. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Torino, Italy, 4–7 September 2018; Volume 1, pp. 1285–1290. [Google Scholar]
- Ferraguti, F.; Pini, F.; Gale, T.; Messmer, F.; Storchi, C.; Leali, F.; Fantuzzi, C. Augmented reality-based approach for on-line quality assessment of polished surfaces. Robot. Comput. Integr. Manuf. 2019, 59, 158–167. [Google Scholar] [CrossRef]
- Pini, F.; Leali, F. Human-robot collaborative reconfigurable platform for surface finishing processes. Procedia Manuf. 2019, 38, 76–83. [Google Scholar] [CrossRef]
- Nguyen, J.; Bailey, M.; Carlucho, I.; Barbalata, C. Robotic Manipulators Performing Smart Sanding Operation: A Vibration Approach. In Proceedings of the 2022. International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 2958–2964. [Google Scholar] [CrossRef]
- Nussbaumer, H.J. The fast Fourier transform. In Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg, Germany, 1981; pp. 80–111. [Google Scholar]
- Li, X.; Zhao, H.; Zhou, H.; Cai, Y.; Yin, Y.; Ding, H. Robotic grinding and polishing of complex aeroengine blades based on new device design and variable impedance control. Robot. Comput. Integr. Manuf. 2025, 92, 102875. [Google Scholar] [CrossRef]
- Huang, R.; Li, B.; He, X.; Zheng, B. Modeling and real-time compliance control of robotic automatic polishing for turbine blades. Int. J. Adv. Manuf. Technol. 2025, 137, 151–166. [Google Scholar] [CrossRef]
- Perez-Vidal, C.; Gracia, L.; Sanchez-Caballero, S.; Solanes, J.E.; Saccon, A.; Tornero, J. Design of a polishing tool for collaborative robotics using minimum viable product approach. Int. J. Comput. Integr. Manuf. 2019, 32, 848–857. [Google Scholar] [CrossRef]
- Solanes, J.E.; Gracia, L.; Muñoz-Benavent, P.; Valls Miro, J.; Perez-Vidal, C.; Tornero, J. Robust hybrid position-force control for robotic surface polishing. J. Manuf. Sci. Eng. 2019, 141, 011013. [Google Scholar] [CrossRef]
- Gracia, L.; Solanes, J.E.; Muñoz-Benavent, P.; Miro, J.V.; Perez-Vidal, C.; Tornero, J. Human-robot collaboration for surface treatment tasks. Interact. Stud. 2019, 201, 148–184. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Lien, C.H. (Eds.) Applications of Sliding Mode Control in Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2017; pp. 435–450. [Google Scholar]
- Zhao, W.; Xiao, J.; Liu, S.; Dou, S.; Liu, H. Robotic direct grinding for unknown workpiece contour based on adaptive constant force control and human–robot collaboration. Ind. Robot 2022, 50, 376–384. [Google Scholar] [CrossRef]
- Devine, C.; Garbini, J.; Devasia, S. Spatially-Constant Material Removal Control Under Variable-Speed Robotic Sanding. In Proceedings of the ASME 2020 15th International Manufacturing Science and Engineering Conference, Online, 3 September 2020; Volume 84263, p. V002T06A006. [Google Scholar] [CrossRef]
- Kana, S.; Lakshminarayanan, S.; Mohan, D.M.; Campolo, D. Impedance controlled human–robot collaborative tooling for edge chamfering and polishing applications. Robot. Comput. Integrated. Manuf. 2021, 72, 102199. [Google Scholar] [CrossRef]
- Lakshminarayanan, S.; Kana, S.; Mohan, D.M.; Manyar, O.M.; Then, D.; Campolo, D. An adaptive framework for robotic polishing based on impedance control. Int. J. Adv. Manuf. Technol. 2021, 112, 401–417. [Google Scholar] [CrossRef]
- Mohsin, I.; He, K.; Li, Z.; Du, R. Path planning under force control in robotic polishing of the complex curved surfaces. Appl. Sci. 2019, 9, 5489. [Google Scholar] [CrossRef]
- Oubre, J.; Ard, W.; Nguyen, J.; Barbalata, C. Towards a fully autonomous robotic system for detection and removal of surface defects in fiber glass panels. IFAC-Pap. 2022, 55, 129–135. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, L.; Sukhatme, G.S. An adaptive k-opt method for solving traveling salesman problem. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 6537–6543. [Google Scholar] [CrossRef]
- Xie, H.L.; Li, J.R.; Liao, Z.Y.; Wang, Q.H.; Zhou, X.F. A robotic belt grinding approach based on easy-to-grind region partitioning. J. Manuf. Process. 2020, 56, 830–844. [Google Scholar] [CrossRef]
- Su, J.; Qiao, H.; Xu, L.; Wang, M. A method of human-robot collaboration for grinding of workpieces. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 1156–1161. [Google Scholar]
- Maric, B.; Mutka, A.; Orsag, M. Collaborative human-robot framework for delicate sanding of complex shape surfaces. IEEE Robot. Autom. Lett. 2020, 5, 2848–2855. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Wu, H.B. A Wheel Polishing Workstation System Based on Multi-industrial Robot. Comput. Mod. 2020, 9, 118–121. [Google Scholar]
- Rozo, L.; Calinon, S.; Caldwell, D.G.; Jimenez, P.; Torras, C. Learning physical collaborative robot behaviors from human demonstrations. IEEE Trans. Robot. 2016, 32, 513–527. [Google Scholar] [CrossRef]
- Lin, H.I.; Wahyudi, Y.R. Haptic Based Robot Teaching Method for Wooden Furniture Polishing. In Proceedings of the 2020 International Automatic Control Conference (CACS), Hsinchu, Taiwan, 4–7 November 2020; pp. 1–6. [Google Scholar]
- Forlini, M.; Ciccarelli, M.; Papetti, A.; Carbonari, L.; Palmieri, G. Implementation and Testing of a Shoe Polishing Process with a Collaborative Robotic System. In Advances in Service and Industrial Robotics RAAD 2023; Petrič, T., Ude, A., Žlajpah, L., Eds.; Mechanisms and Machine Science; Springer: Cham, Switzerland, 2023; Volume 135, pp. 401–408. [Google Scholar] [CrossRef]
- Forlini, M.; Ciccarelli, M.; Carbonari, L.; Papetti, A.; Palmieri, G. Smart automation in luxury leather shoe polishing: A human centric robotic approach. Int. J. Comput. Integr. Manuf. 2024, 1–15. [Google Scholar] [CrossRef]
- Zanchettin, A.M.; Messeri, C.; Cristantielli, D.; Rocco, P. Trajectory optimisation in collaborative robotics based on simulations and genetic algorithms. Int. J. Intell. Robot. Appl. 2022, 6, 707–723. [Google Scholar] [CrossRef]
- Maceira, M.; Olivares-Alarcos, A.; Alenya, G. Recurrent neural networks for inferring intentions in shared tasks for industrial collaborative robots. In Proceedings of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Naples, Italy, 31 August–4 September 2020; pp. 665–670. [Google Scholar] [CrossRef]
- Olivares-Alarcos, A.; Foix, S.; Alenya, G. On inferring intentions in shared tasks for industrial collaborative robots. Electronics 2019, 8, 1306. [Google Scholar] [CrossRef]
- Hopko, S.K.; Khurana, R.; Mehta, R.K.; Pagilla, P.R. Effect of Cognitive Fatigue, Operator Sex, and Robot Assistance on Task Performance Metrics, Workload, and Situation Awareness in Human-Robot Collaboration. IEEE Robot. Autom. Lett. 2021, 6, 3049–3056. [Google Scholar] [CrossRef]
- Pearce, M.; Mutlu, B.; Shah, J.; Radwin, R. Optimizing makespan and ergonomics in integrating collaborative robots into manufacturing processes. IEEE Trans. Autom. Sci. Eng. 2018, 154, 1772–1784. [Google Scholar] [CrossRef]
- Kim, W.; Peternel, L.; Lorenzini, M.; Babič, J.; Ajoudani, A. Human-Robot Collaboration Framework for Improving Ergonomics During Dexterous Operation of Power Tools. Robot. Comput. Integr. Manuf. 2021, 68, 102084. [Google Scholar] [CrossRef]
- Lamon, E.; Peternel, L.; Ajoudani, A. Towards a prolonged productivity in industry 4.0: A framework for fatigue minimisation in robot-robot co-manipulation. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots Humanoids, Beijing, China, 6–9 November 2018; pp. 684–689. [Google Scholar]
- Wang, K.; Ding, L.; Dailami, F.; Matthews, J. GA-AHP Method to Support Robotic Polishing Process Planning. Digit. Manuf. Technol. 2022, 2, 23–44. [Google Scholar] [CrossRef]
- Wang, K.; Ding, L.; Dailami, F.; Matthews, J. A methodology to support robotic polishing of moulds integrated with CAD/CAM. J. Adv. Manuf. Syst. 2024, 23, 349–390. [Google Scholar] [CrossRef]
- Tsarouchi, P.; Matthaiakis, A.S.; Makris, S.; Chryssolouris, G. On a human-robot collaboration in an assembly cell. Int. J. Comput. Integr. Manuf. 2017, 30, 580–589. [Google Scholar] [CrossRef]
- Girbes-Juan, V.; Schettino, V.; Demiris, Y.; Tornero, J. Haptic and visual feedback assistance for dual-arm robot teleoperation in surface conditioning tasks. IEEE Trans. Haptics 2020, 14, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Gaz, C.; Magrini, E.; De Luca, A. A model-based residual approach for human-robot collaboration during manual polishing operations. Mechatronics 2018, 55, 234–247. [Google Scholar] [CrossRef]
- Paxton, C.; Hundt, A.; Jonathan, F.; Guerin, K.; Hager, G.D. CoSTAR: Instructing collaborative robots with behavior trees and vision. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 564–571. [Google Scholar] [CrossRef]
- Ren, T.; Dong, Y.; Wu, D.; Chen, K. Design of direct teaching behavior of collaborative robot based on force interaction. J. Intell. Robot. Syst. 2019, 96, 83–93. [Google Scholar] [CrossRef]
- Brown, S.; Woods, A. An operations management perspective on collaborative robotics. In Proceedings of the American Society for Engineering Management (ASME) 2017 International Annual Conference of the American Society for Engineering Management, Huntsville, AL, USA, 18–21 October 2017; pp. 1–8. [Google Scholar]
- Fang, H.C.; Ong, S.K.; Nee, A.Y.C. A novel augmented reality-based interface for robot path planning. Int. J. Interact. Des. Manuf. 2014, 8, 33–42. [Google Scholar] [CrossRef]
- Ge, J.G. Programming by demonstration by optical tracking system for dual arm robot. In Proceedings of the IEEE ISR 2013, Seoul, Republic of Korea, 24–26 October 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Restrepo, S.S.; Raiola, G.; Chevalier, P.; Lamy, X.; Sidobre, D. Iterative virtual guides programming for human-robot comanipulation. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 219–226. [Google Scholar] [CrossRef]
- Halim, J.; Eichler, P.; Krusche, S.; Bdiwi, M.; Ihlenfeldt, S. No-code robotic programming for agile production: A new markerless-approach for multimodal natural interaction in a human-robot collaboration context. Front. Robot. AI 2022, 9, 1001955. [Google Scholar] [CrossRef]
- De Franco, A.; Lamon, E.; Balatti, P.; De Momi, E.; Ajoudani, A. An Intuitive Augmented Reality Interface for Task Scheduling, Monitoring, and Work Performance Improvement in Human-Robot Collaboration. In Proceedings of the 2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), Budapest, Hungary, 3–5 July 2019; pp. 75–80. [Google Scholar] [CrossRef]
- García Fernández, A. Robust Human-Robot Collaboration for Polishing Tasks in the Automotive Industry. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2023. [Google Scholar]
- Gavriushenko, M.; Kaikova, O.; Terziyan, V. Bridging Human and Machine Learning for the Needs of Collective Intelligence Development. Procedia Manuf. 2020, 42, 302–306. [Google Scholar] [CrossRef]
- Parra, P.S.; Calleros, O.L.; Ramirez-Serrano, A. Human-robot collaboration systems: Components and applications. In Proceedings of the 7th International Conference of Control Systems and Robotics (CDSR’20), Kyoto, Japan, 4–6 December 2025. [Google Scholar] [CrossRef]
- Lasota, P.A.; Fong, T.; Shah, J.A. A survey of methods for safe human-robot interaction. Found. Trends Robot. 2017, 5, 261–349. [Google Scholar] [CrossRef]
- Asimov, I. “Runaround”. I, Robot; Doubleday: New York, NY, USA, 1950; ISBN 978-0-385-42304-5. [Google Scholar]
- Haddadin, S.; Albu-Schaffer, A.; Frommberger, M.; Rossmann, J.; Hirzinger, G. The “DLR Crash Report”: Towards a standard crash-testing protocol for robot safety-Part I: Results. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 272–279. [Google Scholar] [CrossRef]
- Popić, S.; Miloradović, B. Light Weight Robot Arms-An Overview; INFOTEH-JAHORINA: Jahorina, Bosnia and Herzegovina, 2015; Volume 14, pp. 818–822. [Google Scholar]
- Bukner, S.; Farid, D.; Ding, L.; Matthews, J. Bio-inspired design to support reduced energy consumption via the ‘Light Weighting’ of machine system elements. Int. J. Model. Optim. 2015, 5, 82–89. [Google Scholar] [CrossRef]
- Choi, J.; Hong, S.; Lee, W.; Kang, S. A variable stiffness joint using leaf springs for robot manipulators. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 4363–4368. [Google Scholar] [CrossRef]
- Stilli, A.; Grattarola, L.; Feldmann, H.; Wurdemann, H.A.; Althoefer, K. Variable Stiffness Link (VSL): Toward inherently safe robotic manipulators. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4971–4976. [Google Scholar]
- Fumagalli, M.; Ivaldi, S.; Randazzo, M.; Natale, L.; Metta, G.; Sandini, G.; Nori, F. Force feedback exploiting tactile and proximal force/torque sensing. Auton. Robot. 2012, 33, 381–398. [Google Scholar] [CrossRef]
- Ott, C.; Nakamura, Y. Base force/torque sensing for position based Cartesian impedance control. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA; 2009; pp. 3244–3250. [Google Scholar] [CrossRef]
- Iskandar, M.; Eiberger, O.; Albu-Schäffer, A.; De Luca, A.; Dietrich, A. Collision detection, identification, and localization on the DLR SARA robot with sensing redundancy. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 3111–3117. [Google Scholar] [CrossRef]
- Vido, M.; Pacchini, A.P.T. A conceptual human safety system in an industrial shared workspace with a collaborative robot. Int. J. Ind. Syst. Eng. 2025, 49, 119–138. [Google Scholar] [CrossRef]
- Munaro, M.; Menegatti, E. Fast RGB-D people tracking for service robots. Auton. Robot. 2014, 37, 227–242. [Google Scholar] [CrossRef]
- Wang, X.V.; Zhang, X.; Yang, Y.; Wang, L. A human-robot collaboration system towards high accuracy. Procedia CIRP 2020, 93, 1085–1090. [Google Scholar] [CrossRef]
- Magrini, E.; Ferraguti, F.; Ronga, A.J.; Pini, F.; De Luca, A.; Leali, F. Human-robot coexistence and interaction in open industrial cells. Robot. Comput. Integr. Manuf. 2020, 61, 101846. [Google Scholar] [CrossRef]
- Hietanen, A.; Pieters, R.; Lanz, M.; Latokartano, J.; Kämäräinen, J.-K. AR-based interaction for human-robot collaborative manufacturing. Robot. Comput. Integr. Manuf. 2020, 63, 101891. [Google Scholar] [CrossRef]
- Schoose, C.; Cuny-Guerrier, A.; Caroly, S.; Claudon, L.; Wild, P.; Savescu, A. Evolution of the biomechanical dimension of the professional gestures of grinders when using a collaborative robot. Int. J. Occup. Saf. Ergon. 2022, 29, 668–675. [Google Scholar] [CrossRef]
- Petrovic, M.; Vukicevic, A.M.; Lukic, B.; Jovanovic, K. Assessment of the Human-Robot Collaborative Polishing Task by Using EMG Sensors and 3D Pose Estimation. In Advances in Service and Industrial Robotics. RAAD 2022; Müller, A., Brandstötter, M., Eds.; Mechanisms and Machine Science; Springer: Cham, Switzerland, 2022; Volume 120, pp. 564–570. [Google Scholar] [CrossRef]
- Li, Z.; Fan, H.; Wang, X. Design of wood fine grinding workbench based on man-machine cooperation. In Proceedings of the International Conference on Electronic Information Technology (EIT 2022), Chengdu, China, 18–20 March 2022; Volume 122542U, pp. 684–693. [Google Scholar]
- Jung, K.; Yang, J.S. Mitigating safety challenges in human-robot collaboration: The role of human competence. Technol. Forecast. Soc. Change 2025, 213, 124022. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Valino, A.D.; Souza, L.R.; Espera, A.H.; Chen, Q.; Advincula, R.C. 3D Printed Injection Molds Using Various 3D Printing Technologies. Mater. Sci. Forum 2020, 1005, 150–156. [Google Scholar] [CrossRef]
- The Business Report company. Industrial Mold Global Market Report 2025—By Type (Metal Molds, Other Material Molds), By Material (Plastics, Glass, Rubber), By Application (Manufacturing, Automotive, Other Applications)—Impact of Tariff and Trade War on Market Size, Growth, Trends, and Forecast 2025–2034. Available online: https://www.thebusinessresearchcompany.com/report/industrial-mold-global-market-report (accessed on 18 August 2025).
- Kuo, C.C.; Chen, C.M.; Chang, S.X. Polishing mechanism for ABS parts fabricated by additive manufacturing. Int. J. Adv. Manuf. Technol. 2017, 91, 1473–1479. [Google Scholar] [CrossRef]
- Whitmore, L. A mini vibrational polishing machine produced by 3D printing. Ultramicroscopy 2023, 243, 113630. [Google Scholar] [CrossRef]
- Lam, T.F.; Blum, H.; Siegwart, R.; Gawel, A. SL Sensor: An open-source, real-time and robot operating system-based structured light sensor for high accuracy construction robotic applications. Autom. Constr. 2022, 142, 104424. [Google Scholar] [CrossRef]
- Girbés-Juan, V.; Schettino, V.; Gracia, L.; Solanes, J.E.; Demiris, Y.; Tornero, J. Combining haptics and inertial motion capture to enhance remote control of a dual-arm robot. J. Multimodal User Interfaces 2022, 16, 219–238. [Google Scholar] [CrossRef]
- Ansari, J.; Aktas, I.; Brecher, C.; Pallasch, C.; Hoffmann, N.; Obdenbusch, M.; Serror, M.; Wehrle, K.; Gross, J. Demo: A realistic use-case for wireless industrial automation and control. In Proceedings of the 2017 International Conference on Networked Systems (NetSys), Gottingen, Germany, 13–16 March 2017. [Google Scholar] [CrossRef]
- Borrell, J.; González, A.; Perez-Vidal, C.; Gracia, L.; Solanes, J.E. Cooperative human–robot polishing for the task of patina growing on high-quality leather shoes. Int. J. Adv. Manuf. Technol. 2023, 125, 2467–2484. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, J.; Li, L.; Wang, H.; Lin, J.; Zhu, L.; Guo, D.; Wang, X. Fundamental study of surface generation in robot-assisted polishing of optical components. Int. J. Adv. Manuf. Technol. 2025, 137, 2221–2235. [Google Scholar] [CrossRef]
- Kheddar, A.; Caron, S.; Gergondet, P.; Comport, A.; Tanguy, A.; Ott, C.; Henze, B.; Mesesan, G.; Englsberger, J.; Roa, M.A.; et al. Humanoid robots in aircraft manufacturing: The airbus use cases. IEEE Robot. Autom. Mag. 2019, 26, 30–45. [Google Scholar] [CrossRef]
- Bo, H.; Mohan, D.M.; Azhar, M.; Sreekanth, K.; Campolo, D. Human-robot collaboration for tooling path guidance. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 1340–1345. [Google Scholar] [CrossRef]
- Michalik, P.; Hatala, M.; Dobransky, J.; Macej, J.; Petrus, M.; Tirpak, P.; Novotny, L. Design and Evaluation of Production of a Robotic Angle Arm for Collaborative Robot Using the WorkNC CAM Application. In Proceedings of the 5th EAI International Conference on Management of Manufacturing Systems, Online, 5–7 October 2022; pp. 209–218. [Google Scholar] [CrossRef]
- Koelsch, J.R. Robot End-of-Arm Tooling Interoperability Cuts Costs and Boosts ROI. Automation World. Available online: https://www.automationworld.com/factory/robotics/article/55299987/robot-end-of-arm-tooling-interoperability-cuts-costs-and-boosts-roi (accessed on 3 July 2025).
- Mitra, P. FANUC Launches Web Tool to Help Companies Find Cobot Solutions. Available online: https://www.engineering.com/fanuc-launches-web-tool-to-help-companies-find-cobot-solutions/ (accessed on 3 April 2025).
- Dalle Mura, M.; Dini, G. Designing assembly lines with humans and collaborative robots: A genetic approach. CIRP Ann. 2019, 681, 1–4. [Google Scholar] [CrossRef]
- Kinast, A.; Braune, R. Towards Benchmarking of Collaborative Robots in Production. Procedia Comput. Sci. 2025, 253, 1505–1514. [Google Scholar] [CrossRef]
- Raza, M.; Malik, A.A.; Bilberg, A. PDCA integrated simulations enable effective deployment of collaborative robots: Case of a manufacturing SME. Procedia CIRP 2021, 104, 1518–1522. [Google Scholar] [CrossRef]
- Wood, J.C.; Wood, M.C.W. Edwards Deming: Critical Evaluations in Business and Management; Routledge: Abingdon, UK, 2005; Volume 2, ISBN 9780415323888. [Google Scholar]
- Paulo, H.; Vieira, M.; Gonçalves, B.S.; Pinto-Varela, T.; Barbosa-Póvoa, A.P. Assessment of biomass supply chain design and planning using discrete-event simulation modelling. Comput. Aided Chem. Eng. 2022, 51, 967–972. [Google Scholar]
- Kousi, N.; Gkournelos, C.; Aivaliotis, S.; Giannoulis, C.; Michalos, G.; Makris, S. Digital Twin for Adaptation of Robots’ Behavior in Flexible Robotic Assembly Lines. Procedia Manuf. 2019, 28, 121–126. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S.; Li, K.; Luo, H.; Kaynak, O. Industrial applications of digital twins. Philos. Trans. R. Soc. A 2021, 379, 20200360. [Google Scholar] [CrossRef]
- Ramasubramanian, A.K.; Mathew, R.; Kelly, M.; Hargaden, V.; Papakostas, N. Digital Twin for Human–Robot Collaboration in Manufacturing: Review and Outlook. Appl. Sci. 2022, 12, 4811. [Google Scholar] [CrossRef]
- Bi, Z.M.; Luo, C.; Miao, Z.; Zhang, B.; Zhang, W.J.; Wang, L. Safety assurance mechanisms of collaborative robotic systems in manufacturing. Robot. Comput. Integr. Manuf. 2021, 67, 102022. [Google Scholar] [CrossRef]
- M’Colo, K.E.; Luong, B.; Crosnier, A.; Néel, C.; Fraisse, P. Obstacle avoidance using a capacitive skin for safe human-robot interaction. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 6742–6747. [Google Scholar] [CrossRef]
- IEC 61508:2010; Parts 1–7, Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems. IEC: Geneva, Switzerland, 2010.
- ISO 14121; Safety of Machinery—Risk Assessment; Part 1: Principles; and Part 2: Practical Guidance and Examples of Methods. ISO: Geneva, Switzerland, 2007.
- ISO 12100; Safety of Machinery—Basic Concepts General Principles for Design; Part 1: Basic Terminology Methodology; and Part 2: Technical Principles. ISO: Geneva, Switzerland, 2003.
- BS EN ISO 13849-1:2006; Safety of Machinery. Safety-Related Parts of Control Systems. General Principles for Design. ISO: Geneva, Switzerland, 2006.
- IEC 62061:2005; Safety of Machinery—Functional Safety of Safety-Related Electrical Electronic and Programmable Electronic Control Systems”, 2005. ISO: Geneva, Switzerland, 2005.
- ISO 11161: 2010; Safety of Machinery-Integrated Manufacturing Systems-Basic Requirements. ISO: Geneva, Switzerland, 2010.
- ISO10218:1. 2017; Compliant Adaptive Damping Controller for Safe Physical Human-Robot Interaction. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/51330.html (accessed on 11 November 2024).
- ISO10218:2. 2017; Robots and Robotic Devices—Safety Requirements for Industrial Robots—Part 2: Robot Systems and Integration. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/41571.html (accessed on 11 November 2024).
- TS 15066:2016; Robots and Robotic Devices—Collaborative Robots. 2016. Available online: https://www.iso.org/standard/62996.html (accessed on 11 November 2024).
- Berx, N.; Decré, W.; Pintelon, L. Examining the Role of Safety in the Low Adoption Rate of Collaborative Robots. Procedia CIRP 2022, 106, 51–57. [Google Scholar] [CrossRef]
- Maurice, P.; Padois, V.; Measson, Y.; Bidaud, P. Human-oriented design of collaborative robots. Int. J. Ind. Ergon. 2017, 57, 88–102. [Google Scholar] [CrossRef]
- Xue, Z.; Chen, X.; He, Y.; Cao, H.; Tian, S. Gesture-and vision-based automatic grasping and flexible placement in teleoperation. Int. J. Adv. Manuf. Technol. 2022, 122, 117–132. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Gao, Z.; Peng, F.; Tang, X.; Yan, R.; Zhang, Y. Intelligent learning model-based skill learning and strategy optimization in robot grinding and polishing. Sci. China Technol. Sci. 2022, 65, 1957–1974. [Google Scholar] [CrossRef]
- Husmann, S.; Stemmler, S.; Hähnel, S.; Vogelgesang, S.; Abel, D.; Bergs, T. Model predictive force control in grinding based on a lightweight robot. IFAC-Pap. 2019, 52, 1779–1784. [Google Scholar] [CrossRef]
- Malhan, R.K.; Kabir, A.M.; Shah, B.; Centea, T.; Gupta, S.K. Determining Feasible Robot Placements in Robotic Cells for Composite Prepreg Sheet Layup. In Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, PL, USA, 10–14 June 2019; Volume 1. [Google Scholar] [CrossRef]
- Balci, B.; Donovan, J.; Roberts, J.; Corke, P. Optimal Workpiece Placement Based on Robot Reach, Manipulability and Joint Torques. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 12302–12308. [Google Scholar] [CrossRef]
- Pedroso, A.F.; Sebbe, N.P.; Silva, F.J.; Campilho, R.D.; Sales-Contini, R.C.; Costa, R.D.; Sánchez, I.I. An overview on the recent advances in robot-assisted compensation methods used in machining lightweight materials. Robot. Comput. Integr. Manuf. 2025, 91, 102844. [Google Scholar] [CrossRef]
- Zeng, X.; Zhu, G.; Gao, Z.; Ji, R.; Ansari, J.; Lu, C. Surface polishing by industrial robots: A review. Int. J. Adv. Manuf. Technol. 2023, 125, 3981–4012. [Google Scholar] [CrossRef]
- Kiran, M.B. A novel online surface roughness measuring method. In Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management, Singapore, 7–11 March 2021; pp. 2907–2916. [Google Scholar]
- Xu, X.; Zhu, D.; Zhang, H.; Yan, S.; Ding, H. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements. Int. J. Adv. Manuf. Technol. 2017, 90, 635–647. [Google Scholar] [CrossRef]
Paper | Context of Review |
---|---|
Ajoudani et al. (2018) [37] | Interfaces for robots’ interactions in collaborative systems. |
Villani et al. (2018) [38] | Barriers and applications of Cobots in manufacturing systems. |
Li et al. (2018) [29] | A review of robotic polishing. |
Bragança et al. (2019) [39] | An overview of how collaborative robots can be used to support human workers in Industry 4.0 manufacturing environments, concentrating on the human perspectives and safety. |
Matheson et al. (2019) [40] | Interaction types between humans and robots in collaborative manufacturing systems. |
El Zaatari et al. (2019) [41] | An overview of collaborative industrial scenarios and programming requirements for Cobots for implementation. |
Hentout et al. (2019) [42] | A literature review of research and development on human–robot interactions in industrial collaborative robots (between 2008 and 2017) |
Knudsen and Kaivo-Oja (2020) [43] | Presentation of an overview of current collaborative trends and futures frontiers of the Cobot development with particular emphasis on the role of Cobots within the Industry 4.0 paradigm. |
Hashemi-Petroodi et al. (2020) [44] | Current issues in manufacturing, dual resource constrained (DRC), and human–robot collaboration (HRC) optimization. |
Vicentini (2020) [45] | Terminology in safety of collaborative robotics. |
Proia et al. (2021) [46] | Control techniques for collaborative robotics in industrial settings. |
Gualtieri et al. (2021) [47] | Human–robot safety and ergonomics in collaborative systems. |
Pinheiro et al. (2022) [48] | Safety and ergonomics/human factors for industrial collaborative robotics. |
Javaid et al., (2022) [49] | Implementations and applicability of Cobots in industrial manufacturing scenarios. |
Kóczi and Sárosi, 2022 [50] | Review of the major elements of safety in the application of collaborative robots. |
Deng et al. (2022) [36] | Review of force control strategies for robotic grinding and polishing. |
Ke et al. (2023) [35] | Review of robot-assisted polishing, specifically the integration of robots with various polishing techniques. |
Paper | Main Topics | Robots | Materials |
---|---|---|---|
Kalt et al. [56] | Capturing polishing parameters of manual polishing processes | KUKA KR16 | Complex aerospace components |
Orchoa and Cortesao [66] | A torque-based impedance control architecture for robotic mold polishing | Franka Emika | Steel mold |
Lin et al. [67] | A grinding tool with contact-force control | TM5-700 | Workpiece (100 mm × 100 mm× 2 mm) |
Ubeda et al. [68], Wang et al. [69], | That applied force does not guarantee a better surface finish | Robot UR3 | Aluminum, steel, brass, wood, plastic |
Li et al. [70] | A predictive model for robotic polishing | Nachi industrial robot | Stainless steel workpiece |
Guo et al. [71]. | The optimization parameters for polishing | ULTRAPOL-1200 | End surfaces of ChG glass fiber |
Zhang et al. [72] | The influence of process factors for surface temperature, for electron beam surface polishing | ANSYS Parametric Design language | Metal surface |
Rahi and Dubey [73] | A Response Surface Methodology for hybrid metal matrix composite materials | ELECTRO-M | Hybrid metal matrix composite |
Mitropoulos et al. [74] | Optimizing polishing speed, feed rate, and force levels | Flat metal surface Al-SiC-Gr composite | |
Wang et al. [75] | Optimizing belt grinding parameters | a five-axis CNC belt grinding | Large marine propeller (manganese bronze) |
Ramesh-Kumar and Omkumar [76] | Optimized parameters of speed, slurry flow rate, down pressure and process time | Chemical Mechanical Polishing | Soda lime glass |
Hahnel et al. [77] | Combining both a collaborative intelligence-based and a cooperative human–robot-based technological approach. | Autodesk “PowerMill Robot” | Two plates |
Ferraguti et al. [78], Pini and Leali [79] | Surface quality assessment for the Abrasive Finishing | IRB 4600 ABB robotic | Pre-hardened steel flat plates, type 1.2738 |
Nguyen [80] | A Cobot and an intelligent system for sand operations | UR5e | Wood and metal panels |
Li et al. [82], Huang et al. [83] | Variable impedance control methods for the robotic grinding and polishing | UR5e | Turbine blades |
Perez-Vidal et al. [84] | A collaborative tool for robotic polishing with a hybrid position-force control | UR5/UR10 | Horizontal flat surface |
Solanes et al. [85], Gracia et al. [86] | A hybrid position-force control of robots for surface polishing with task priority | Sawyer Cobot | Flat object |
Zhao et al. [88] | A constant force control and human–robot collaboration for grinding | . | Complex unknown profiles |
Devine et al. [89] | A process model and control strategy for constant material removal depth along the sanding path | Yaskawa HC10 | Fat 3D printed ABS test articles |
Paper | Main Topics | Robots | Materials |
---|---|---|---|
Lakshminarayanan et al. [91], Kana et al. [90] | User physically guides the robot to generate a mathematical model for the tool path | LBR IIWA 7 | Hard metals (aluminum) |
Mohsin et al. [92] | A tool path planning algorithm with controlled force and polishing parameter optimization | ABB IRB 1200 | Curved surfaces (eyeglass frame) |
Oubre et al. [93] | Path planning for the sanding based on a travelling salesman problem | UR5e | Fiber glass panels, wind blades |
Xie et al. [95] | A region-based approach for toolpath planning to avoid gouges for the belt grinding of complex parts | ABB IRB 4600 robot | Milled faucet made of copper |
Su et al. [96] | Path planning with control points of NURBS for the grinding finish of water facets | Robot of Googol Technology Ltd. | Water taps |
Maric et al. [97] | CAD model for path planning and control algorithm with force sensors for trajectory planning | Kuka KR10 i | Complex shape surfaces |
Liu et al. [98] | A virtual design scheme of robot collaborative polishing workstation for the problem of trajectory planning | Dual-industrial robot | Automobile wheel hub |
Rozo et al. [99] | Approach with probabilistic learning for the robot to learn trajectory following skills and required forces. | WAM robot and Kuka LWR | |
Lin and Wahyudi [100] | A haptic-based robot teaching tool to generate a skillful polishing trajectory | Fanuc M20-iA/35M | Wooden furniture |
Forlini et al. [101] | Creation of trajectories for the automation polishing using a Cobot | UR5e | Shoe leather |
Forlini et al. [102] | A three-tier approach for trajectory generation for shoe polishing | UR5e | Shoe |
Zanchettin et al. [103] | A real-time trajectory optimization method based on a genetic algorithm and a Digital Twin (DT) for collaborative robots | ABB YuMi dual-arm robot, | Small parts |
Paper | Main Topics |
---|---|
Maceira et al. [104] | A recurrent neural network-based algorithm to recognize worker force information and detect human intention |
Olivares-Alarcos et al. [105] | Identification of intentions of different humans and adaptation of behavior consequently based on measured force data |
Hopko [106] | Examination of operator fatigue, sex, and robot assistance level for metal surface polishing by HRC |
Pearce et al. [107] | An optimization framework for task assignments and schedules of a human–robot team aiming to improve both time and ergonomics |
Kim et al. [108] | Ergonomic and task-optimized HRC for minimizing the overloading joint torques |
Chiriatti et al. [3] | A simulation-based approach to evaluate a HRC for leather shoe polishing so as to reduce manual labor |
Lamon et al. [109] | A method to adapt the robot’s physical behavior online to match the human motor fatigue |
Wang et al. [111], Wang et al. [110] | Identification of the mold features that need a human to complete and optimization of polishing operation scheduling |
Tsarouchi et al. [112] | A Robot Operating System (ROS) framework using body gestures for interactions and commanding the robot |
Girbes-Juan et al. [113] | A multi-modal teleoperation system combining haptics and an inertial motion capture system for a dual-arm collaborative robot |
Gaz et al. [114] | A control algorithm for laser polishing to distinguish the external torques on the robot joints into polishing forces or the intentional physical interaction engaged by a human |
Paxton et al. [115] | COSTAR, a Behavior Tree-based system to create task plans for industrial robots in consideration |
Ren et al. [116] | A teaching playback strategy for robots using a force interaction method as natural command communication |
Restrepo et al. [120] | A PbD approach for humans to program and locally modify the virtual guides through physical interaction with the Cobot |
Halim et al. [121] | A hybrid approach combining intelligent computer vision and voice control capabilities to program Cobots |
De Franco et al. [122] | An interface for HRC polishing for operators sending commands by gesture or vocal signal and receiving feedback by an AR device |
García Fernández [123] | An AR-based interface integrated with SMC and priority-based control for surface sanding |
Gavriushenko et al. [124] | Training both the robot and the human together for HRC |
Paper | Main Topics |
---|---|
Vido and Pancchini [136] | A conceptual safety system architecture for a HRC, especially covering safety requirements during the early design stage. |
Su et al. [96] | Identifying the regions in which the operator and the robot do not collide with through tracking the operator’s motion and modifying the grinding trajectory according to prediction. |
Wang et al. [138] | Detecting and tracking the pose of the operator using RGB camera, mostly based on RGB-D. |
Magrini et al. [139] | Online monitoring of relative human–robot distance using depth sensors and modifying the robot behavior on the user position based on a layered control architecture. |
Hietanen et al. [140] | A computation model allowing the user to monitor changes in the workspace through an AR interface to establish safety. |
Schoose et al. [141] | Study on vibrations, repetitiveness, and the postures of the operator for grinding in order to reduce potential MSDs. |
Petrovic et al. [142] | An approach to enhance ergonomics for safe HRC using vision systems and electromyography of muscles. |
Li et al. [143] | A wood sanding HRC for safety with force feed sensors and dust collection. |
Jung and Yang [144] | Highlight of the importance of a socio-technical system perspective to address the complex interactions between collaborative robots, human factors, and organizational dynamics in workplace safety. |
Industrial Demands | Future Research Directions | Supporting Technologies |
---|---|---|
New manufacturing technologies emerging | Integrated ALM/RTM process | Additive layer manufacture |
Rapid tool manufacture | ||
Product personalization | Integrated multi-robot collaborative system | CAD/CAM |
Trend to multi-robot collaboration | Simulation | |
Scalability of Cobot systems | Unified open coding standards | Cobot properties, Cloud |
Enhancing safety | New standards/regulations | |
Real-time Cobot behavior adaptation | Vision recognition, AI, DT | |
Toward fully automated system | Cobot configuration properties | Optimization algorithms, AI, high-precision sensors, AR |
Real-time performance control | ||
Online quality assessment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Ding, L.; Dailami, F.; Matthews, J. A Contemporary Review of Collaborative Robotics Employed in Manufacturing Finishing Operations: Recent Progress and Future Directions. Machines 2025, 13, 772. https://doi.org/10.3390/machines13090772
Wang K, Ding L, Dailami F, Matthews J. A Contemporary Review of Collaborative Robotics Employed in Manufacturing Finishing Operations: Recent Progress and Future Directions. Machines. 2025; 13(9):772. https://doi.org/10.3390/machines13090772
Chicago/Turabian StyleWang, Ke, Lian Ding, Farid Dailami, and Jason Matthews. 2025. "A Contemporary Review of Collaborative Robotics Employed in Manufacturing Finishing Operations: Recent Progress and Future Directions" Machines 13, no. 9: 772. https://doi.org/10.3390/machines13090772
APA StyleWang, K., Ding, L., Dailami, F., & Matthews, J. (2025). A Contemporary Review of Collaborative Robotics Employed in Manufacturing Finishing Operations: Recent Progress and Future Directions. Machines, 13(9), 772. https://doi.org/10.3390/machines13090772