AI-Driven Robotics: Innovations in Design, Perception, and Decision-Making
Abstract
1. Introduction
2. Artificial Intelligence Promotes Robot Design
2.1. Automated Intelligent Design
2.2. Intelligent Material Selection
2.3. Modular Design
3. Application of Artificial Intelligence in Robot Perception Technology
3.1. Sensor Data Processing
Category | Sensor Description | Data Type and Format | Data Processing Method | Typical Applications | Ref |
---|---|---|---|---|---|
Visual perception | camera | LiDAR point cloud data/Spatial | Adaptive Moment Estimation (Adam) | 3D object detection, automatic driving | [62] |
An ordinary camera system | Sports stimulation and sine wave grating stimulation/Time Series | lobula giant movement detector (LGMD2) | Autonomous Navigation, Collision Detection, Obstacle Avoidance of Mobile Robots | [63] | |
2D retinomorphic devices | frame difference time/Time Series | convolutional neural network (CNN) | Intelligent Internet of Things, human-eye biomimetic design | [64] | |
ZnO photo-synapse sensor | photocurrent matrix/Matrix light stimulation/Time Series | Artificial Neural Network (ANN) | Neural morphology, artificial visual systems | [65] | |
Auditory perception | The skin-attachable acoustic sensor | Capacitance–voltage/Scalar | Analog-to-digital converter | Auditory electronic skin | [66] |
a thin-film flexible acoustic sensor | Sound signal/Time Series | short-time Fourier transform (STFT) | Physiological Acoustic Signal Monitoring | [67] | |
A spiral-artificial basilar membrane sensor | Electrical signal/Scalar Noise data/Time Series | Frequency response analysis | Speech recognition, dangerous situation recognition, hearing aids | [68] | |
Tactile perception | BB-Skin | Temperature change/Time Series | Support Vector Machines (SVM) | Real-Time Temperature Monitoring, Object Recognition System | [69] |
Triboelectric sensor | open circuit voltage, short circuit current, transferred charge/Mapping | linear discriminant analysis (LDA) | Identified the type and roughness of various common materials | [70] | |
Tattoo-like electronics | Surface electromyographic/Vector | LDA | Natural communication in daily life | [71] |
3.1.1. Visual Perception
3.1.2. Auditory Perception
3.1.3. Tactile Perception
3.1.4. Multi-Sensor Fusion
3.2. Computer Vision
3.3. Natural Language Processing
4. The Role of Artificial Intelligence in Robot Intelligent Control
4.1. Autonomous Navigation and Path Planning
4.1.1. Path Planning Algorithm
4.1.2. Reinforcement Learning
4.1.3. Adaptive Control
4.2. Motion Control and Coordination
4.2.1. Motion Control
4.2.2. Feedback Control
4.2.3. Multi-Robot Coordination
4.3. Human Machine Collaboration
4.3.1. Cooperative Control
4.3.2. Security Monitoring and Protection
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, Z.; Han, J.; Shi, Q.; Demir, S.O.; Jiang, W.; Sitti, M. Single-step precision programming of decoupled multiresponsive soft millirobots. Proc. Natl. Acad. Sci. USA 2024, 121, e2320386121. [Google Scholar] [CrossRef]
- Gong, S.; Ding, Q.; Wu, J.; Li, W.-B.; Guo, X.-Y.; Zhang, W.-M.; Shao, L. Bioinspired Multifunctional Mechanoreception of Soft–Rigid Hybrid Actuator Fingers. Adv. Intell. Syst. 2022, 4, 2100242. [Google Scholar] [CrossRef]
- Xia, G.; Zhang, L.; Dai, Y.; Xue, Y.; Zhang, J. Sound Feedback Fuzzy Control for Optimizing Bone Milling Operation During Robot-Assisted Laminectomy. IEEE Trans. Fuzzy Syst. 2024, 32, 2341–2351. [Google Scholar] [CrossRef]
- Kim, J.; de Mathelin, M.; Ikuta, K.; Kwon, D.-S. Advancement of Flexible Robot Technologies for Endoluminal Surgeries. Proc. IEEE 2022, 110, 909–931. [Google Scholar] [CrossRef]
- Zhang, H.; Yi, H.; Wang, C.; Yang, J.; Jin, T.; Zhao, J. A Robotic Microforceps for Retinal Microsurgery with Adaptive Clamping Method. IEEE/ASME Trans. Mechatron. 2024, 29, 4492–4503. [Google Scholar] [CrossRef]
- Inazawa, M.; Takemori, T.; Tanaka, M.; Matsuno, F. Motion Design for a Snake Robot Negotiating Complicated Pipe Structures of a Constant Diameter. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 8073–8079. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Wang, H.; Yu, X.; Yang, K.; Liu, W.; Nie, S.; Sun, W.; Xie, Z.; Chen, B.; et al. A 1 mm-Thick Miniatured Mobile Soft Robot with Mechanosensation and Multimodal Locomotion. IEEE Robot. Autom. Lett. 2020, 5, 3290–3297. [Google Scholar] [CrossRef]
- Kang, X.; Song, B.; Guo, J.; Qin, Z.; Yu, F.R. Task-oriented image transmission for scene classification in unmanned aerial systems. IEEE Trans. Commun. 2022, 70, 5181–5192. [Google Scholar] [CrossRef]
- Yue, Y.; Wen, M.; Putra, Y.; Wang, M.; Wang, D. Tightly-Coupled Perception and Navigation of Heterogeneous Land-Air Robots in Complex Scenarios. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 10052–10058. [Google Scholar] [CrossRef]
- Singla, A.; Padakandla, S.; Bhatnagar, S. Memory-based deep reinforcement learning for obstacle avoidance in UAV with limited environment knowledge. IEEE Trans. Intell. Transp. Syst. 2019, 22, 107–118. [Google Scholar] [CrossRef]
- Su, H.; Di Lallo, A.; Murphy, R.R.; Taylor, R.H.; Garibaldi, B.T.; Krieger, A. Physical human–robot interaction for clinical care in infectious environments. Nat. Mach. Intell. 2021, 3, 184–186. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Z.; Yan, Y.; Yang, C.; Hu, Y. Multi-agent policy learning-based path planning for autonomous mobile robots. Eng. Appl. Artif. Intell. 2024, 129, 107631. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Li, Q.; Su, H.; Kan, Z.; He, W. Human-in-the-Loop Control of Soft Exosuits Using Impedance Learning on Different Terrains. IEEE Trans. Robot. 2022, 38, 2979–2993. [Google Scholar] [CrossRef]
- Anh, P.T.Q.; Thuyet, D.Q.; Kobayashi, Y. Image classification of root-trimmed garlic using multi-label and multi-class classification with deep convolutional neural network. Postharvest Biol. Technol. 2022, 190, 111956. [Google Scholar] [CrossRef]
- Wang, M.; Yan, Z.; Wang, T.; Cai, P.; Gao, S.; Zeng, Y.; Wan, C.; Wang, H.; Pan, L.; Yu, J.; et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563–570. [Google Scholar] [CrossRef]
- Sun, X.; Li, J.; Kovalenko, A.V.; Feng, W.; Ou, Y. Integrating Reinforcement Learning and Learning from Demonstrations to Learn Nonprehensile Manipulation. IEEE Trans. Autom. Sci. Eng. 2023, 20, 1–10. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.; Zhao, Y.; Hu, J.; Li, H.; Jiang, Z. Guided Model-Based Policy Search Method for Fast Motor Learning of Robots with Learned Dynamics. IEEE Trans. Autom. Sci. Eng. 2024, 22, 453–465. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Z.; Sun, C.; Yan, R.; Chen, X. Multireceptive Field Graph Convolutional Networks for Machine Fault Diagnosis. IEEE Trans. Ind. Electron. 2021, 68, 12739–12749. [Google Scholar] [CrossRef]
- Nakhli, R.; Zhang, A.; Mirabadi, A.; Rich, K.; Asadi, M.; Gilks, B.; Farahani, H.; Bashashati, A. Co-pilot: Dynamic top-down point cloud with conditional neighborhood aggregation for multi-gigapixel histopathology image representation. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 1–6 October 2023; pp. 21063–21073. [Google Scholar] [CrossRef]
- Ajeil, F.H.; Ibraheem, I.K.; Sahib, M.A.; Humaidi, A.J. Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm. Appl. Soft Comput. 2020, 89, 106076. [Google Scholar] [CrossRef]
- Han, M.; Lyu, Z.; Qiu, T.; Xu, M. A Review on Intelligence Dehazing and Color Restoration for Underwater Images. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1820–1832. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Chen, W.; Liang, Q.; Liu, B.; Zheng, H.; Li, K. Study of an Untethered Bioinspired Piezoelectric Father-Son Robot for Deep-Sea Narrow Space. IEEE Trans. Ind. Electron. 2024, 71, 16108–16119. [Google Scholar] [CrossRef]
- Kong, D.; Yang, G.; Pang, G.; Ye, Z.; Lv, H.; Yu, Z.; Wang, F.; Wang, X.V.; Xu, K.; Yang, H. Bioinspired Co-Design of Tactile Sensor and Deep Learning Algorithm for Human–Robot Interaction. Adv. Intell. Syst. 2022, 4, 2200050. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Z.; Li, X.; Wang, X.V.; Yang, B.; Zheng, J. Energy consumption prediction and optimization of industrial robots based on LSTM. J. Manuf. Syst. 2023, 70, 137–148. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Shan, X.; Lee, C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat. Commun. 2022, 13, 5224. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Solomon, S.A.; Min, J.; Tu, J.; Guo, W.; Xu, C.; Song, Y.; Gao, W. All-printed soft human-machine interface for robotic physicochemical sensing. Sci. Robot. 2022, 7, eabn0495. [Google Scholar] [CrossRef]
- Che, Y.; Okamura, A.M.; Sadigh, D. Efficient and Trustworthy Social Navigation via Explicit and Implicit Robot-Human Communication. IEEE Trans. Robot. 2020, 36, 692–707. [Google Scholar] [CrossRef]
- Saeidi, H.; Opfermann, J.D.; Kam, M.; Wei, S.; Leonard, S.; Hsieh, M.H.; Kang, J.U.; Krieger, A. Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci. Robot. 2022, 7, eabj2908. [Google Scholar] [CrossRef]
- Ji, Y.; Ni, L.; Zhao, C.; Lei, C.; Du, Y.; Wang, W. TriPField: A 3D Potential Field Model and Its Applications to Local Path Planning of Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1–14. [Google Scholar] [CrossRef]
- Li, H.; Liu, W.; Yang, C.; Wang, W.; Qie, T.; Xiang, C. An Optimization-Based Path Planning Approach for Autonomous Vehicles Using the DynEFWA-Artificial Potential Field. IEEE Trans. Intell. Veh. 2022, 7, 263–272. [Google Scholar] [CrossRef]
- Sundaram, S.; Kellnhofer, P.; Li, Y.; Zhu, J.-Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702. [Google Scholar] [CrossRef]
- Shu, S.; Wang, Z.; Chen, P.; Zhong, J.; Tang, W.; Wang, Z.L. Machine-Learning Assisted Electronic Skins Capable of Proprioception and Exteroception in Soft Robotics. Adv. Mater. 2023, 35, e2211385. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Sun, S.; Wang, X.; Shi, K.; Wang, Z.; Ma, X.; Zhang, W.; Bao, G.; Tian, Y.; Zhang, Z.; et al. Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. Npj Flex. Electron. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Gan, Y.; Zhang, B.; Shao, J.; Han, Z.; Li, A.; Dai, X. Embodied Intelligence: Bionic Robot Controller Integrating Environment Perception, Autonomous Planning, and Motion Control. IEEE Robot. Autom. Lett. 2024, 9, 4559–4566. [Google Scholar] [CrossRef]
- Kaveh, A.; Abedi, M. Analysis and optimal design of scissor-link foldable structures. Eng. Comput. 2019, 35, 593–604. [Google Scholar] [CrossRef]
- Stroppa, F. Design optimizer for planar soft-growing robot manipulators. Eng. Appl. Artif. Intell. 2024, 130, 107693. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, S.; Yin, H.; Weisbecker, H.; Tran, H.T.; Guo, Z.; Han, T.; Wang, Y.; Liu, Y.; Wu, Y.; et al. Skin-inspired, sensory robots for electronic implants. Nat. Commun. 2024, 15, 4777. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, Z.; Wang, J.; Tan, M.; Yu, J. Locomotion Optimization of a Tendon-Driven Robotic Fish with Variable Passive Tail Fin. IEEE Trans. Ind. Electron. 2023, 70, 4983–4992. [Google Scholar] [CrossRef]
- Liu, J.; Low, J.H.; Han, Q.Q.; Lim, M.; Lu, D.; Yeow, C.-H.; Liu, Z. Simulation Data Driven Design Optimization for Reconfigurable Soft Gripper System. IEEE Robot. Autom. Lett. 2022, 7, 5803–5810. [Google Scholar] [CrossRef]
- Kouritem, S.A.; Abouheaf, M.I.; Nahas, N.; Hassan, M. A multi-objective optimization design of industrial robot arms. Alex. Eng. J. 2022, 61, 12847–12867. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Wang, J.; Qin, N.; Yang, H.; Sun, K.; Hao, J.; Shu, L.; Liu, J.; Chen, Q.; et al. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 2022, 13, 79. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Park, J.; Burgner-Kahrs, J.; Noh, G. Design of patterns in tubular robots using DNN-metaheuristics optimization. Int. J. Mech. Sci. 2023, 251, 108352. [Google Scholar] [CrossRef]
- Zi, P.; Xu, K.; Tian, Y.; Ding, X. A mechanical adhesive gripper inspired by beetle claw for a rock climbing robot. Mech. Mach. Theory 2023, 181, 105168. [Google Scholar] [CrossRef]
- Qiu, Y.; Zou, Z.; Zou, Z.; Setiawan, N.K.; Dikshit, K.V.; Whiting, G.; Yang, F.; Zhang, W.; Lu, J.; Zhong, B.; et al. Deep-learning-assisted printed liquid metal sensory system for wearable applications and boxing training. Npj Flex. Electron. 2023, 7, 37. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of origami robots. Nat. Reviews. Mater. 2018, 3, 101–112. [Google Scholar] [CrossRef]
- Hu, J.; Whitman, J.; Travers, M.; Choset, H. Modular Robot Design Optimization with Generative Adversarial Networks. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 4282–4288. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, J.; Wang, Z.; Law, J.; Cao, H.; Li, Y.; Wang, H.; Liu, Y. Modular origami soft robot with the perception of interaction force and body configuration. Adv. Intell. Syst. 2022, 4, 2200081. [Google Scholar] [CrossRef]
- Zhang, H. Mechanics Analysis of Functional Origamis Applicable in Biomedical Robots. IEEE/ASME Trans. Mechatron. 2022, 27, 2589–2599. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X.; Wang, X.V.; Wang, L.; Gao, L. A Review on Recent Advances in Vision-based Defect Recognition towards Industrial Intelligence. J. Manuf. Syst. 2022, 62, 753–766. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.; Yang, J.; Wang, Y.; Hao, S. Center-based Transfer Feature Learning with Classifier Adaptation for surface defect recognition. Mech. Syst. Signal Process. 2023, 188, 110001. [Google Scholar] [CrossRef]
- Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang, B. Segment anything in medical images. Nat. Commun. 2024, 15, 654. [Google Scholar] [CrossRef]
- Soomro, T.A.; Zheng, L.; Afifi, A.J.; Ali, A.; Soomro, S.; Yin, M.; Gao, J. Image Segmentation for MR Brain Tumor Detection Using Machine Learning: A Review. IEEE Rev. Biomed. Eng. 2023, 16, 70–90. [Google Scholar] [CrossRef]
- Dong, Y.; Yao, Y.-D. Secure mmWave-Radar-Based Speaker Verification for IoT Smart Home. IEEE Internet Things J. 2021, 8, 3500–3511. [Google Scholar] [CrossRef]
- Shang, J.; Wu, J. Voice Liveness Detection for Voice Assistants Through Ear Canal Pressure Monitoring. IEEE Trans. Netw. Sci. Eng. 2022, 9, 1225–1234. [Google Scholar] [CrossRef]
- Zhang, H.; Ruan, H.; Zhao, H.; Wang, Z.; Hu, S.; Cui, T.J.; del Hougne, P.; Li, L. Microwave Speech Recognizer Empowered by a Programmable Metasurface. Adv. Sci. 2024, 11, e2309826. [Google Scholar] [CrossRef]
- Khan, M.; Gueaieb, W.; El Saddik, A.; Kwon, S. MSER: Multimodal speech emotion recognition using cross-attention with deep fusion. Expert Syst. Appl. 2024, 245, 122946. [Google Scholar] [CrossRef]
- Li, Q.; Du, Z.; Liu, F.; Yu, H. Tactile Perception for Surgical Status Recognition in Robot-Assisted Laminectomy. IEEE Trans. Ind. Electron. 2022, 69, 11425–11435. [Google Scholar] [CrossRef]
- Wei, D.; Guo, J.; Qiu, Y.; Liu, S.; Mao, J.; Liu, Y.; Chen, Z.; Wu, H.; Yin, Z. Monitoring the delicate operations of surgical robots via ultra-sensitive ionic electronic skin. Natl. Sci. Rev. 2022, 9, nwac227. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, C.; Lee, Y.J.; DelPreto, J.; Wu, K.; Foshey, M.; Rus, D.; Palacios, T.; Li, Y.; Torralba, A.; et al. Adaptive tactile interaction transfer via digitally embroidered smart gloves. Nat. Commun. 2024, 15, 868. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, H.; Zou, Y.; Chu, H. An electromyography signals-based human-robot collaboration method for human skill learning and imitation. J. Manuf. Syst. 2022, 64, 330–343. [Google Scholar] [CrossRef]
- Gao, A.; Pang, Y.; Nie, J.; Shao, Z.; Cao, J.; Guo, Y.; Li, X. ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 2000–2009. [Google Scholar] [CrossRef]
- Fu, Q.; Hu, C.; Peng, J.; Rind, F.C.; Yue, S. A Robust Collision Perception Visual Neural Network with Specific Selectivity to Darker Objects. IEEE Trans. Cybern. 2020, 50, 5074–5088. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Liu, C.; Xie, R.; Hu, W.; Zhou, P. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 2022, 17, 27–32. [Google Scholar] [CrossRef]
- Jiang, J.; Xiao, W.; Li, X.; Zhao, Y.; Qin, Z.; Xie, Z.; Shen, G.; Zhou, J.; Fu, Y.; Wang, Y.; et al. Hardware-Level Image Recognition System Based on ZnO Photo-Synapse Array with the Self-Denoising Function. Adv. Funct. Mater. 2024, 34, 2313507. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Roh, H.; Kim, W.; Chung, S.; Moon, W.; Cho, K. A High-Fidelity Skin-Attachable Acoustic Sensor for Realizing Auditory Electronic Skin. Adv. Mater. 2022, 34, e2109545. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, C.; Liu, W.; Wang, X.; Wen, K.; Feng, Z.; Zhang, G.; Fan, E.; He, Q.; Lin, Z.; et al. Ultra-Broadband Flexible Thin-Film Sensor for Sound Monitoring and Ultrasonic Diagnosis. Small 2024, 20, 2305678. [Google Scholar] [CrossRef] [PubMed]
- Jeon, E.; Lee, U.; Yoon, S.; Hur, S.; Choi, H.; Han, C. Frequency-Selective, Multi-Channel, Self-Powered Artificial Basilar Membrane Sensor with a Spiral Shape and 24 Critical Bands Inspired by the Human Cochlea. Adv. Sci. 2024, 11, e2400955. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, A.; Shi, Y.; Luo, Y.; Li, J.; Ye, M.; Guo, W. Skin-Inspired Bimodal Receptors for Object Recognition and Temperature Sensing Simulation. Adv. Funct. Mater. 2024, 34, 2403528. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Z.; Tan, P.; Wang, C.; Liu, Y.; Feng, H.; Luo, D.; Li, Z.; Wang, Z.L. Artificial tactile perception smart finger for material identification based on triboelectric sensing. Sci. Adv. 2022, 8, eabq2521. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, T.; Xu, Y.; Bai, Y.; Yin, L.; Li, G.; Zhang, H.; Liu, H.; Huang, Y. All-weather, natural silent speech recognition via machine-learning-assisted tattoo-like electronics. Npj Flex. Electron. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Wei, X.; Li, H.; Yue, W.; Gao, S.; Chen, Z.; Li, Y.; Shen, G. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022, 5, 1481–1501. [Google Scholar] [CrossRef]
- Ji, Y.; Yin, S.; Liu, Y.; Bowen, C.R.; Yang, Y. Dual-mode temperature sensor based on ferroelectric Bi0.5Na0.5TiO3 materials for robotic tactile perception. Nano Energy 2024, 128, 109982. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Wang, L.; Zhu, R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci. Robot. 2020, 5, eabc8134. [Google Scholar] [CrossRef]
- Xiong, Y.; Huo, Z.; Zhang, J.; Liu, Y.; Yue, D.; Xu, N.; Gu, R.; Wei, L.; Luo, L.; Chen, M.; et al. Triboelectric in-sensor deep learning for self-powered gesture recognition toward multifunctional rescue tasks. Nano Energy 2024, 124, 109465. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, W.; Xiao, Z.; Zhang, S.; Li, W.; Hu, J.; Feng, T.; Wu, J.; Zhu, P.; Mao, Y. Deep-Learning-Assisted Noncontact Gesture-Recognition System for Touchless Human-Machine Interfaces. Adv. Funct. Mater. 2022, 32, 2208271. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, K.; Soltis, I.; Matthews, J.; Lee, Y.J.; Kim, H.; Romero, L.; Zavanelli, N.; Kwon, Y.; Kwon, S.; et al. Intelligent upper-limb exoskeleton integrated with soft bioelectronics and deep learning for intention-driven augmentation. Npj Flex. Electron. 2024, 8, 11–13. [Google Scholar] [CrossRef]
- Li, S.; Yu, H.; Ding, W.; Liu, H.; Ye, L.; Xia, C.; Wang, X.; Zhang, X.-P. Visual-Tactile Fusion for Transparent Object Grasping in Complex Backgrounds. IEEE Trans. Robot. 2023, 39, 1–19. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Z.; Zhang, Z.; Shi, Q.; He, T.; Liu, H.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693. [Google Scholar] [CrossRef]
- Zhuang, M.; Yin, L.; Wang, Y.; Bai, Y.; Zhan, J.; Hou, C.; Yin, L.; Xu, Z.; Tan, X.; Huang, Y. Highly Robust and Wearable Facial Expression Recognition via Deep-Learning-Assisted, Soft Epidermal Electronics. Research 2021, 2021, 9759601. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Z.; Zhu, P.; Su, B.; Wei, C.; Tian, Y.; Zhang, Z.; Chai, H.; Liu, A.; Liang, L.; et al. A multisensory-feedback tactile glove with dense coverage of sensing arrays for object recognition. Chem. Eng. J. 2023, 455, 140890. [Google Scholar] [CrossRef]
- Yang, W.; Xie, M.; Zhang, X.; Sun, X.; Zhou, C.; Chang, Y.; Zhang, H.; Duan, X. Multifunctional Soft Robotic Finger Based on a Nanoscale Flexible Temperature–Pressure Tactile Sensor for Material Recognition. ACS Appl. Mater. Interfaces 2021, 13, 55756–55765. [Google Scholar] [CrossRef]
- Han, S.; Zhi, X.; Xia, Y.; Guo, W.; Li, Q.; Chen, D.; Liu, K.; Wang, X. All Resistive Pressure-Temperature Bimodal Sensing E-Skin for Object Classification. Small 2023, 19, e2301593. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Han, L.; Qian, W.; Wang, J.; Wu, H.; Li, J.; Dai, Y.; Zhang, Z.; Bowen, C.R.; et al. Intelligent Recognition Using Ultralight Multifunctional Nano-Layered Carbon Aerogel Sensors with Human-Like Tactile Perception. Nano-Micro Lett. 2024, 16, 11. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, L.; Li, X. A Generative Adversarial Network Based Deep Learning Method for Low-Quality Defect Image Reconstruction and Recognition. IEEE Trans. Ind. Inform. 2021, 17, 3231–3240. [Google Scholar] [CrossRef]
- Du, Z.; Gao, L.; Li, X. A New Contrastive GAN with Data Augmentation for Surface Defect Recognition Under Limited Data. IEEE Trans. Instrum. Meas. 2023, 72, 1–13. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Y.; Gao, L.; Li, X.; Li, M. A New Multiscale Multiattention Convolutional Neural Network for Fine-Grained Surface Defect Detection. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Li, Z.; Gao, L.; Li, X.; Gao, Y. ACAT-transformer: Adaptive classifier with attention-wise transformation for few-sample surface defect recognition. Adv. Eng. Inform. 2024, 61, 102527. [Google Scholar] [CrossRef]
- Tian, R.; Zhang, Y.; Feng, Y.; Yang, L.; Cao, Z.; Coleman, S.; Kerr, D. Accurate and Robust Object SLAM With 3D Quadric Landmark Reconstruction in Outdoors. IEEE Robot. Autom. Lett. 2022, 7, 1534–1541. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, S.; Fitch, R. Active SLAM for Mobile Robots with Area Coverage and Obstacle Avoidance. IEEE/ASME Trans. Mechatron. 2020, 25, 1182–1192. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Zhang, S.; Lou, Y. Active View Planning for Visual SLAM in Outdoor Environments Based on Continuous Information Modeling. IEEE/ASME Trans. Mechatron. 2024, 29, 1–12. [Google Scholar] [CrossRef]
- Hassaballah, M.; Kenk, M.A.; Muhammad, K.; Minaee, S. Vehicle Detection and Tracking in Adverse Weather Using a Deep Learning Framework. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4230–4242. [Google Scholar] [CrossRef]
- Hussain, A.; Khan, S.U.; Khan, N.; Shabaz, M.; Baik, S.W. AI-driven behavior biometrics framework for robust human activity recognition in surveillance systems. Eng. Appl. Artif. Intell. 2024, 127, 107218. [Google Scholar] [CrossRef]
- Tschandl, P.; Rinner, C.; Apalla, Z.; Argenziano, G.; Codella, N.; Halpern, A.; Janda, M.; Lallas, A.; Longo, C.; Malvehy, J.; et al. Human–computer collaboration for skin cancer recognition. Nat. Med. 2020, 26, 1229–1234. [Google Scholar] [CrossRef]
- Du, H.; Shi, H.; Zeng, D.; Zhang, X.-P.; Mei, T. The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances. ACM Comput. Surv. 2022, 54, 1–42. [Google Scholar] [CrossRef]
- Chen, W.; Li, G.; Li, M.; Wang, W.; Li, P.; Xue, X.; Zhao, X.; Liu, L. LLM-Enabled Incremental Learning Framework for Hand Exoskeleton Control. IEEE Trans. Autom. Sci. Eng. 2024, 22, 2617–2626. [Google Scholar] [CrossRef]
- Abdalla, M.; Hassan, H.; Mostafa, N.; Abdelghafar, S.; Al-Kabbany, A.; Hadhoud, M. An NLP-based system for modulating virtual experiences using speech instructions. Expert Syst. Appl. 2024, 249, 123484. [Google Scholar] [CrossRef]
- Scotti, V.; Sbattella, L.; Tedesco, R. A Primer on Seq2Seq Models for Generative Chatbots. ACM Comput. Surv. 2024, 56, 1–58. [Google Scholar] [CrossRef]
- Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: A survey. Robot. Auton. Syst. 2016, 86, 13–28. [Google Scholar] [CrossRef]
- Pei, M.; An, H.; Liu, B.; Wang, C. An Improved Dyna-Q Algorithm for Mobile Robot Path Planning in Unknown Dynamic Environment. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Dong, Q. Autonomous navigation of UAV in multi-obstacle environments based on a Deep Reinforcement Learning approach. Appl. Soft Comput. 2022, 115, 108194. [Google Scholar] [CrossRef]
- Yang, C.; Pu, C.; Xin, G.; Zhang, J.; Li, Z. Learning Complex Motor Skills for Legged Robot Fall Recovery. IEEE Robot. Autom. Lett. 2023, 8, 4307–4314. [Google Scholar] [CrossRef]
- Maroger, I.; Stasse, O.; Watier, B. Walking Human Trajectory Models and Their Application to Humanoid Robot Locomotion. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 3465–3472. [Google Scholar] [CrossRef]
- Wang, R.; Lu, Z.; Xiao, Y.; Zhao, Y.; Jiang, Q.; Shi, X. Design and Control of a Multi-Locomotion Parallel-Legged Bipedal Robot. IEEE Robot. Autom. Lett. 2024, 9, 1993–2000. [Google Scholar] [CrossRef]
- Yuan, F.; Boltz, M.; Bilal, D.; Jao, Y.-L.; Crane, M.; Duzan, J.; Bahour, A.; Zhao, X. Cognitive Exercise for Persons with Alzheimer’s Disease and Related Dementia Using a Social Robot. IEEE Trans. Robot. 2023, 39, 1–15. [Google Scholar] [CrossRef]
- Agravante, D.J.; Cherubini, A.; Sherikov, A.; Wieber, P.-B.; Kheddar, A. Human-Humanoid Collaborative Carrying. IEEE Trans. Robot. 2019, 35, 833–846. [Google Scholar] [CrossRef]
- Yu, X.; Li, B.; He, W.; Feng, Y.; Cheng, L.; Silvestre, C. Adaptive-Constrained Impedance Control for Human-Robot Co-Transportation. IEEE Trans. Cybern. 2022, 52, 13237–13249. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, H.; Zhang, Z. Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects. IEEE/CAA J. Autom. Sin. 2024, 11, 301–328. [Google Scholar] [CrossRef]
- Gama, F.; Shcherban, M.; Rolf, M.; Hoffmann, M. Goal-Directed Tactile Exploration for Body Model Learning Through Self-Touch on a Humanoid Robot. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 419–433. [Google Scholar] [CrossRef]
- Qi, H.; Chen, X.; Yu, Z.; Huang, G.; Liu, Y.; Meng, L.; Huang, Q. Vertical Jump of a Humanoid Robot with CoP-Guided Angular Momentum Control and Impact Absorption. IEEE Trans. Robot. 2023, 39, 1–13. [Google Scholar] [CrossRef]
- Qin, Y.; Escande, A.; Kanehiro, F.; Yoshida, E. Dual-Arm Mobile Manipulation Planning of a Long Deformable Object in Industrial Installation. IEEE Robot. Autom. Lett. 2023, 8, 3039–3046. [Google Scholar] [CrossRef]
- Murooka, M.; Chappellet, K.; Tanguy, A.; Benallegue, M.; Kumagai, I.; Morisawa, M.; Kanehiro, F.; Kheddar, A. Humanoid Loco-Manipulations Pattern Generation and Stabilization Control. IEEE Robot. Autom. Lett. 2021, 6, 5597–5604. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, H.; Ma, Y.; Wang, X.; Mo, Y.; Li, H.; Jiang, Z. BIT-DMR: A Humanoid Dual-Arm Mobile Robot for Complex Rescue Operations. IEEE Robot. Autom. Lett. 2022, 7, 802–809. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.X. A Novel Feature Learning-Based Bio-Inspired Neural Network for Real-Time Collision-Free Rescue of Multirobot Systems. IEEE Trans. Ind. Electron. 2024, 71, 14420–14429. [Google Scholar] [CrossRef]
- Vo, D.T.; Le, A.V.; Ta, T.D.; Tran, M.; Van Duc, P.; Vu, M.B.; Nhan, N.H.K. Toward complete coverage planning using deep reinforcement learning by trapezoid-based transformable robot. Eng. Appl. Artif. Intell. 2023, 122, 105999. [Google Scholar] [CrossRef]
- Bai, Z.; Pang, H.; He, Z.; Zhao, B.; Wang, T. Path Planning of Autonomous Mobile Robot in Comprehensive Unknown Environment Using Deep Reinforcement Learning. IEEE Internet Things J. 2024, 11, 22153–22166. [Google Scholar] [CrossRef]
- Wu, J.; Song, C.; Ma, J.; Wu, J.; Han, G. Reinforcement Learning and Particle Swarm Optimization Supporting Real-Time Rescue Assignments for Multiple Autonomous Underwater Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6807–6820. [Google Scholar] [CrossRef]
- Ambuj; Nagar, H.; Paul, A.; Machavaram, R.; Soni, P. Reinforcement learning particle swarm optimization based trajectory planning of autonomous ground vehicle using 2D LiDAR point cloud. Robot. Auton. Syst. 2024, 178, 104723. [Google Scholar] [CrossRef]
- Muni, M.K.; Parhi, D.R.; Kumar, P.B.; Sahu, C.; Kumar, S. Towards motion planning of humanoids using a fuzzy embedded neural network approach. Appl. Soft Comput. 2022, 119, 108588. [Google Scholar] [CrossRef]
- Fahmi, S.; Focchi, M.; Radulescu, A.; Fink, G.; Barasuol, V.; Semini, C. STANCE: Locomotion Adaptation Over Soft Terrain. IEEE Trans. Robot. 2020, 36, 443–457. [Google Scholar] [CrossRef]
- Lim, D.; Kim, D.; Park, J. Momentum Observer-Based Collision Detection Using LSTM for Model Uncertainty Learning. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 4516–4522. [Google Scholar] [CrossRef]
- Xu, F.; Kang, X.; Wang, H. Hybrid Visual Servoing Control of a Soft Robot with Compliant Obstacle Avoidance. IEEE/ASME Trans. Mechatron. 2024, 29, 4446–4455. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Liu, L.; Tao, D. The Visual Footsteps Planning System for Exoskeleton Robots Under Complex Terrain. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 5149–5160. [Google Scholar] [CrossRef]
- Tulbure, A.; Khatib, O. Closing the Loop: Real-Time Perception and Control for Robust Collision Avoidance with Occluded Obstacles. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 5700–5707. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.; Li, D.; Shi, J.; Li, X.; Gao, L.; Yu, L.; Han, G.; Wu, J. An Adaptive Conversion Speed Q-Learning Algorithm for Search and Rescue UAV Path Planning in Unknown Environments. IEEE Trans. Veh. Technol. 2023, 72, 15391–15404. [Google Scholar] [CrossRef]
- Wen, S.; Wen, Z.; Zhang, D.; Zhang, H.; Wang, T. A multi-robot path-planning algorithm for autonomous navigation using meta-reinforcement learning based on transfer learning. Appl. Soft Comput. 2021, 110, 107605. [Google Scholar] [CrossRef]
- Li, X.; Liang, X.; Wang, X.; Wang, R.; Shu, L.; Xu, W. Deep reinforcement learning for optimal rescue path planning in uncertain and complex urban pluvial flood scenarios. Appl. Soft Comput. 2023, 144, 110543. [Google Scholar] [CrossRef]
- Puente-Castro, A.; Rivero, D.; Pedrosa, E.; Pereira, A.; Lau, N.; Fernandez-Blanco, E. Q-Learning based system for Path Planning with Unmanned Aerial Vehicles swarms in obstacle environments. Expert Syst. Appl. 2024, 235, 121240. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Shen, Y.; Zhang, X. Autonomous Navigation of UAVs in Large-Scale Complex Environments: A Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2019, 68, 2124–2136. [Google Scholar] [CrossRef]
- Yang, J.; Ni, J.; Xi, M.; Wen, J.; Li, Y. Intelligent Path Planning of Underwater Robot Based on Reinforcement Learning. IEEE Trans. Autom. Sci. Eng. 2023, 20, 1983–1996. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, X.; Warnell, G.; Stone, P. APPLE: Adaptive Planner Parameter Learning from Evaluative Feedback. IEEE Robot. Autom. Lett. 2021, 6, 7744–7749. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, C.; Gao, F. Automatic Parameter Adaptation for Quadrotor Trajectory Planning. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 3348–3355. [Google Scholar] [CrossRef]
- Shan, Y.; Zheng, B.; Chen, L.; Chen, L.; Chen, D. A Reinforcement Learning-Based Adaptive Path Tracking Approach for Autonomous Driving. IEEE Trans. Veh. Technol. 2020, 69, 10581–10595. [Google Scholar] [CrossRef]
- Liu, M.; Chour, K.; Rathinam, S.; Darbha, S. Lateral Control of an Autonomous and Connected Following Vehicle with Limited Preview Information. IEEE Trans. Intell. Veh. 2021, 6, 406–418. [Google Scholar] [CrossRef]
- Goldsztejn, E.; Feiner, T.; Brafman, R. PTDRL: Parameter Tuning Using Deep Reinforcement Learning. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 11356–11362. [Google Scholar] [CrossRef]
- Hou, Y.; Li, J.; Chen, I.-M. Self-Supervised Antipodal Grasp Learning with Fine-Grained Grasp Quality Feedback in Clutter. IEEE Trans. Ind. Electron. 2024, 71, 1–8. [Google Scholar] [CrossRef]
- Fu, K.; Dang, X. Light-Weight Convolutional Neural Networks for Generative Robotic Grasping. IEEE Trans. Ind. Inform. 2024, 20, 6696–6707. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Y.; Demeester, E.; Kellens, K. BIG-Net: Deep Learning for Grasping with a Bio-Inspired Soft Gripper. IEEE Robot. Autom. Lett. 2023, 8, 584–591. [Google Scholar] [CrossRef]
- Morrison, D.; Corke, P.; Leitner, J. Learning robust, real-time, reactive robotic grasping. Int. J. Robot. Res. 2020, 39, 183–201. [Google Scholar] [CrossRef]
- Wei, D.; Cao, J.; Gu, Y. Robot Grasp in Cluttered Scene Using a Multi-Stage Deep Learning Model. IEEE Robot. Autom. Lett. 2024, 9, 6512–6519. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Zhang, Q.; Liu, F. Two-stage grasp strategy combining CNN-based classification and adaptive detection on a flexible hand. Appl. Soft Comput. 2020, 97, 106729. [Google Scholar] [CrossRef]
- Choi, S.; Ji, G.; Park, J.; Kim, H.; Mun, J.; Lee, J.H.; Hwangbo, J. Learning quadrupedal locomotion on deformable terrain. Sci. Robot. 2023, 8, eade2256. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Tang, L.; Li, J.R.; Liu, J. Strengthening evolution-based differential evolution with prediction strategy for multimodal optimization and its application in multi-robot task allocation. Appl. Soft Comput. 2023, 139, 110218. [Google Scholar] [CrossRef]
- Wensing, P.M.; Posa, M.; Hu, Y.; Escande, A.; Mansard, N.; Del Prete, A. Optimization-Based Control for Dynamic Legged Robots. IEEE Trans. Robot. 2024, 40, 43–63. [Google Scholar] [CrossRef]
- Sombolestan, M.; Nguyen, Q. Hierarchical Adaptive Loco-manipulation Control for Quadruped Robots. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 12156–12162. [Google Scholar] [CrossRef]
- Zeng, C.; Li, S.; Jiang, Y.; Li, Q.; Chen, Z.; Yang, C.; Zhang, J. Learning compliant grasping and manipulation by teleoperation with adaptive force control. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 717–724. [Google Scholar] [CrossRef]
- Qiu, C.; Wu, Z.; Wang, J.; Tan, M.; Yu, J. Multiagent-Reinforcement-Learning-Based Stable Path Tracking Control for a Bionic Robotic Fish with Reaction Wheel. IEEE Trans. Ind. Electron. 2023, 70, 12670–12679. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Z.; Chen, Y.; Wu, H. Barrier Lyapunov Function-Based Fuzzy Adaptive Admittance Control of an Upper Limb Exoskeleton Using RBFNN Compensation. IEEE/ASME Trans. Mechatron. 2024, 30, 3–14. [Google Scholar] [CrossRef]
- Sombolestan, M.; Nguyen, Q. Adaptive-Force-Based Control of Dynamic Legged Locomotion over Uneven Terrain. IEEE Trans. Robot. 2024, 40, 2462–2477. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, H.; Zhang, F.; Jiang, Y.; Miao, Z.; Yu, H.; Wang, Y. DIBNN: A Dual-Improved-BNN Based Algorithm for Multi-Robot Cooperative Area Search in Complex Obstacle Environments. IEEE Trans. Autom. Sci. Eng. 2024, 22, 2361–2374. [Google Scholar] [CrossRef]
- Wen, C.; Ma, H. An efficient two-stage evolutionary algorithm for multi-robot task allocation in nuclear accident rescue scenario. Appl. Soft Comput. 2024, 152, 111223. [Google Scholar] [CrossRef]
- Sombolestan, M.; Nguyen, Q. Hierarchical Adaptive Control for Collaborative Manipulation of a Rigid Object by Quadrupedal Robots. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; pp. 2752–2759. [Google Scholar] [CrossRef]
- Gao, G.; Mei, Y.; Xin, B.; Jia, Y.-H.; Browne, W.N. Automated Coordination Strategy Design Using Genetic Programming for Dynamic Multipoint Dynamic Aggregation. IEEE Trans. Cybern. 2022, 52, 13521–13535. [Google Scholar] [CrossRef]
- Li, J.; Gu, X.; Qiu, S.; Zhou, X.; Cangelosi, A.; Loo, C.K.; Liu, X. A Survey of Wearable Lower Extremity Neurorehabilitation Exoskeleton: Sensing, Gait Dynamics, and Human-Robot Collaboration. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 3675–3693. [Google Scholar] [CrossRef]
- Madan, R.; Jenamani, R.K.; Nguyen, V.T.; Moustafa, A.; Hu, X.; Dimitropoulou, K.; Bhattacharjee, T. SPARCS: Structuring Physically Assistive Robotics for Caregiving with Stakeholders-in-the-loop. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; pp. 641–648. [Google Scholar] [CrossRef]
- Yang, G.; Wang, S.; Yang, J.; Shi, P. Desire-Driven Reasoning Considering Personalized Care Preferences. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 5758–5769. [Google Scholar] [CrossRef]
- Do, H.M.; Sheng, W.; Harrington, E.E.; Bishop, A.J. Clinical Screening Interview Using a Social Robot for Geriatric Care. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1229–1242. [Google Scholar] [CrossRef]
- Lima, M.R.; Wairagkar, M.; Gupta, M.; Baena, F.R.Y.; Barnaghi, P.; Sharp, D.J.; Vaidyanathan, R. Conversational Affective Social Robots for Ageing and Dementia Support. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 1378–1397. [Google Scholar] [CrossRef]
- Roveda, L.; Testa, A.; Shahid, A.A.; Braghin, F.; Piga, D. Q-Learning-based model predictive variable impedance control for physical human-robot collaboration. Artif. Intell. 2022, 312, 103771. [Google Scholar] [CrossRef]
- Ko, D.; Lee, D.; Lee, W.; Kim, K.; Chung, W.K. Compensation Modulation for Tracking Accuracy in Free Motion and Compliance During Interaction. IEEE/ASME Trans. Mechatron. 2024, 30, 180–190. [Google Scholar] [CrossRef]
- Gill, S.S.; Xu, M.; Ottaviani, C.; Patros, P.; Bahsoon, R.; Shaghaghi, A.; Golec, M.; Stankovski, V.; Wu, H.; Abraham, A.; et al. AI for next generation computing: Emerging trends and future directions. Internet Things 2022, 19, 100514. [Google Scholar] [CrossRef]
- Zabihi, Z.; Moghadam, A.M.E.; Rezvani, M.H. Reinforcement Learning Methods for Computation Offloading: A Systematic Review. ACM Comput. Surv. 2024, 56, 1–41. [Google Scholar] [CrossRef]
Application Area | Algorithms | Advantages | Disadvantages |
---|---|---|---|
Image recognition and classification | GAN + VGG16 | Improving image quality and recognition accuracy in low-quality images | Long training time, Poor generalization ability |
contrastive GAN | Generate high-quality and diverse defect images in limited data image to Improve the accuracy of surface defect recognition | The generated images were not selected and entered into the model, and Gan training time was too long and poor real-time performance. | |
MSMA-SDD | Accurately detect defects of various sizes and shapes | Spending a lot of time tuning hyperparameters for MSMA-SDD | |
Adaptive Classifier with Attention-wise Transformation (ACAT) | Improved the recognition accuracy of surface defects in the case of few samples and enhanced generalization | Long training time, not suitable for small and fine defect detection | |
SLAM | separating quadric parameters (SQP) + ODA | Improve the robustness and accuracy of ellipsoid reconstruction, ensures highly accurate object pose estimation and ellipsoid landmark representation | Not considering the semantic relationship between object ellipsoids |
model predictive control (MPC) + SQP | Improve its runtime performance and generate a collision-free trajectory to finish the coverage task | Only suitable for the 2-D case | |
Fisher+receding horizon optimization (RHO) + Visual simultaneous localization and mapping (vSLAM) | Improvement of localization robustness and accuracy | The sensor has strong dependence, and in poor visual conditions, the data quality is poor | |
Object detection and tracking | automatic white balance fused by Laplacian pyramid (AWBLP) + You Only Look Once version 3 (YOLOv3) | Improve images quality and the detection accuracy | Unable to completely solve the problem of image distortion under various adverse weather conditions |
dynamic attention fusion unit (DAFU) + temporal-spatial fusion (TSF) | Accurately identifying human activities, improving the reliability, accuracy, and model generalization of activity recognition in complex environments | Further improvement and optimization are still needed in certain complex scenarios and real-time aspects |
Method Category | Representative Algorithm | Advantages | Disadvantages |
---|---|---|---|
Biological inspired neural network | Bio-inspired NN [114] | Real time adaptation to dynamic environments; Fast path generation speed | computationally expensive |
Reinforcement Learning | DRL [115], DDQN [116] | Autonomous optimization strategy; Dealing with dynamic and complex environments | Difficulty in simulation migration; High consumption of computing resources |
Particle swarm optimization | PSO [117], RLPSO [118] | Fast convergence | Easy to fall into local optima |
Fuzzy control | Mamdani fuzzy system [119], STANCE [120] | Rules interpretable; Real time adjustment of control strategy | Complex tasks are limited |
Memory network | LSTM [121] | Processing time-series data | High training data requirements; High computational complexity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Li, L.; Li, M.; Liang, K. AI-Driven Robotics: Innovations in Design, Perception, and Decision-Making. Machines 2025, 13, 615. https://doi.org/10.3390/machines13070615
Li L, Li L, Li M, Liang K. AI-Driven Robotics: Innovations in Design, Perception, and Decision-Making. Machines. 2025; 13(7):615. https://doi.org/10.3390/machines13070615
Chicago/Turabian StyleLi, Lei, Li Li, Mantian Li, and Ke Liang. 2025. "AI-Driven Robotics: Innovations in Design, Perception, and Decision-Making" Machines 13, no. 7: 615. https://doi.org/10.3390/machines13070615
APA StyleLi, L., Li, L., Li, M., & Liang, K. (2025). AI-Driven Robotics: Innovations in Design, Perception, and Decision-Making. Machines, 13(7), 615. https://doi.org/10.3390/machines13070615