Analysis of Nonlinear Dynamics of a Gear Transmission System Considering Effects of the Extended Tooth Contact
Abstract
:1. Introduction
2. Modeling of the Gear Transmission System and Time-Varying Mesh Stiffness
2.1. Analytical Model of Time-Varying Mesh Stiffness
2.2. Dynamic Model of the Gear Transmission System
3. IHB Method for Periodic Responses of the Gear Transmission System
4. Analyzing of Stability and Bifurcation Analysis of Periodic Responses
5. Numerical Results and Discussion
5.1. Verification of Analytical Model of Time-Varying Mesh Stiffness
5.2. Verification of Dynamic Model and Analyzing of Nonlinear Phenomena of the Gear Transmission System
5.3. Effects of Loads on Nonlinear Dynamic Responses of the Gear Transmission System
5.4. Effects of Loads on Bifurcation Characteristics of Frequency Response Curves
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Detailed Formulation Process of the Matrix K j′ and the Vector R jK
References
- Lin, T.J.; Ou, H.G.; Li, R.F. A finite element method for 3D static and dynamic contact/impact analysis of gear drives. Comput. Methods Appl. Mech. Eng. 2007, 196, 1716–1728. [Google Scholar] [CrossRef]
- Eritenel, T.; Parker, R.G. An investigation of tooth mesh nonlinearity and partial contact loss in gear pairs using a lumped-parameter model. Mech. Mach. Theory 2012, 56, 28–51. [Google Scholar] [CrossRef]
- Fang, Y.N.; Liang, X.H.; Zuo, M.J. Effects of friction and stochastic load on transient characteristics of a spur gear pair. Nonlinear Dyn. 2018, 93, 599–609. [Google Scholar] [CrossRef]
- Raghuwanshi, N.K.; Parey, A. Mesh stiffness measurement of cracked spur gear by photoelasticity technique. Measurement 2015, 73, 439–452. [Google Scholar] [CrossRef]
- Yogesh, P.; Parey, A. Crack behavior in a high contact ratio spur gear tooth and its effect on mesh stiffness. Eng. Fail. Anal. 2013, 34, 69–78. [Google Scholar]
- Wang, J.D.; Howard, I. Finite element analysis of high contact ratio spur gears in mesh. J. Tribol. 2005, 127, 469–483. [Google Scholar] [CrossRef]
- Zhan, J.X.; Fard, M.; Jazar, R. A CAD-FEM-QSA integration technique for determining the time-varying meshing stiffness of gear pairs. Measurement 2017, 100, 139–149. [Google Scholar] [CrossRef]
- Liang, X.H.; Zhang, H.S.; Zuo, M.J.; Qin, Y. Three new models for evaluation of standard involute spur gear mesh stiffness. Mech. Syst. Signal Process. 2018, 101, 424–434. [Google Scholar] [CrossRef]
- Yang, D.C.H.; Lin, J.Y. Hertzian damping, tooth friction and bending elasticity in gear impact dynamics. J. Mech. Transm. Autom. Des. 1987, 109, 189–196. [Google Scholar] [CrossRef]
- Liang, X.H.; Zuo, M.J.; Pandey, M. Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set. Mech. Mach. Theory 2014, 76, 20–38. [Google Scholar] [CrossRef]
- Meng, Z.; Shi, G.X.; Wang, F.L. Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness. Mech. Mach. Theory 2020, 148, 103786. [Google Scholar] [CrossRef]
- Liu, X.Z. Vibration modelling and fault evolution symptom analysis of a planetary gear train for sun gear wear status assessment. Mech. Syst. Signal Process. 2022, 166, 108403. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Xiang, C.L.; Wang, C. Tooth profile modification based on lateral-torsional-rocking coupled nonlinear dynamic model of gear system. Mech. Mach. Theory 2016, 105, 606–619. [Google Scholar] [CrossRef]
- Meng, F.S.; Xia, H.; Zhang, X.; Wang, J.; Jin, Y. Study on nonlinear dynamic characteristics of gear system with 3D anisotropic rough tooth surface based on fractal theory. Int. J. Non-Linear Mech. 2023, 150, 104366. [Google Scholar] [CrossRef]
- Tian, H.X.; Zhao, X.J.; Huang, W.K.; Ma, H. A stiffness model for EHL contact on smooth/rough surfaces and its application in mesh stiffness calculation of the planetary gear set. Tribol. Int. 2024, 196, 109720. [Google Scholar] [CrossRef]
- Zhou, W.G.; Zhu, R.P.; Li, Z.W.; Liu, W.; Wang, J. An improved dynamic model of spur gears considering delayed meshing out of the contact point due to root crack. Mech. Syst. Signal Process. 2024, 212, 111325. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, T.J.; Fu, L.Y. Analytical and experimental study on acoustic-vibration characteristics of double-helical planetary gear transmission systems with multi-field coupling effect. Mech. Syst. Signal Process. 2025, 224, 112143. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Luo, W.J.; Hu, Y.M.; He, Z.; Wang, S. Study on the mesh stiffness and nonlinear dynamics accounting for centrifugal effect of high-speed spur gears. Mech. Mach. Theory 2022, 170, 104686. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Feng, R.J.; Pang, X.; Wen, B. An improved analytical method for mesh stiffness calculation of spur gears with tip relief. Mech. Mach. Theory 2016, 98, 64–80. [Google Scholar] [CrossRef]
- Ma, H.; Pang, X.; Feng, R.J.; Zeng, J.; Wen, B. Improved time-varying mesh stiffness model of cracked spur gears. Eng. Fail. Anal. 2015, 55, 271–287. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, H.; Li, Z.; Peng, Z. The nonlinear dynamics response of cracked gear system in a coal cutter taking environmental multi-frequency excitation forces into consideration. Nonlinear Dyn. 2016, 84, 203–222. [Google Scholar] [CrossRef]
- Wan, Z.G.; Cao, H.R.; Zi, Y.Y.; He, W.; He, Z. An improved time-varying mesh stiffness algorithm and dynamic modeling of gear-rotor system with tooth root crack. Eng. Fail. Anal. 2014, 42, 157–177. [Google Scholar] [CrossRef]
- Liu, G.; Parker, R.G. Dynamic modeling and analysis of tooth profile modification for multimesh gear vibration. J. Mech. Des. 2008, 130, 1121402. [Google Scholar] [CrossRef]
- Pan, W.J.; Li, X.P.; Wang, L.L. Nonlinear response analysis of gear-shaft-bearing system considering tooth contact temperature and random excitations. Appl. Math. Model. 2019, 68, 113–136. [Google Scholar] [CrossRef]
- Moradi, H.; Salarieh, H. Analysis of nonlinear oscillations in spur gear pairs with approximated modelling of backlash nonlinearity. Mech. Mach. Theory 2012, 51, 14–316. [Google Scholar] [CrossRef]
- Mo, S.; Zhang, Y.X.; Song, Y.L. Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system. Nonlinear Dyn. 2022, 108, 3367–3389. [Google Scholar]
- Bruzzone, F.; Rosso, C. Comparison of two possible dynamic models for gear dynamic analysis. In Topics in Modal Analysis & Parameter Identification, Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2023; Volume 9, pp. 183–192. [Google Scholar]
- Bruzzone, F.; Rosso, C.; Theodossiades, S. Dynamic reduction technique for nonlinear analysis of spur gear pairs. Nonlinear Dyn. 2024, 112, 15797–15811. [Google Scholar] [CrossRef]
- Bruzzone, F.; Maggi, T.; Marcellini, C.; Rosso, C. Gear teeth deflection model for spur gears: Proposal of a 3D nonlinear and non-hertzian approach. Machines 2021, 9, 223. [Google Scholar] [CrossRef]
- Oliveri, L.; Rosso, C.; Zucca, S. Influence of actual static transmission error and contact ratio on gear engagement dynamics. In Nonlinear Dynamics, Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2017; Volume 1, pp. 143–154. [Google Scholar]
- Al-Shyyab, A.; Kahraman, A. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: Sub-harmonic motions. J. Sound Vib. 2005, 279, 417–451. [Google Scholar] [CrossRef]
- Hou, J.Y.; Yang, S.P.; Li, Q.; Liu, Y. Analysis of dynamic characteristics of a fractional-order spur gear pair with internal and external excitations. J. Comput. Nonlinear Dyn. 2022, 17, 021004. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, W.; Han, J.; Song, Y.; Wang, J.; Dai, Y. Vibration analysis for tooth crack detection in a spur gear system with clearance nonlinearity. Int. J. Mech. Sci. 2019, 157, 648–661. [Google Scholar] [CrossRef]
- Liu, G.H.; Hong, J.; Parker, R.G. Influence of simultaneous time-varying bearing and tooth mesh stiffness fluctuations on spur gear pair vibration. Nonlinear Dyn. 2019, 97, 1403–1424. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Hu, Y.M.; He, Z.; Xiao, Y.; Zhang, X. On the extended tooth contact and nonlinear dynamics for spur gears—An analytical model. Mech. Mach. Theory 2022, 175, 104958. [Google Scholar] [CrossRef]
- Kahraman, A.; Singh, R. Non-linear dynamics of a geared rotor-bearing system with multiple clearances. J. Sound Vib. 1991, 144, 469–506. [Google Scholar] [CrossRef]
- Lau, S.L.; Zhang, W.S. Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method. J. Appl. Mech. 1992, 59, 153–160. [Google Scholar] [CrossRef]
- Choi, Y.S.; Noah, S.T. Forced periodic vibration of unsymmetric piecewise-linear systems. J. Sound Vib. 1988, 121, 117–126. [Google Scholar] [CrossRef]
- Zhou, S.H.; Song, G.Q.; Li, Y.M.; Huang, Z.; Ren, Z. Dynamic and steady analysis of a 2-DOF vehicle system by modified incremental harmonic balance method. Nonlinear Dyn. 2019, 98, 75–94. [Google Scholar] [CrossRef]
- Vorotnikov, K.; Starosvetsky, Y. Bifurcation structure of the special class of nonstationary regimes emerging in the 2D inertially coupled, unit-cell model: Analytical study. J. Sound Vib. 2016, 377, 226–242. [Google Scholar] [CrossRef]
- Huang, J.L.; Zhang, B.X.; Zhu, W.D. Quasi-periodic solutions of a damped nonlinear quasi-periodic mathieu equation by the incremental harmonic balance method with two time scales. J. Appl. Mech. 2022, 89, 091009. [Google Scholar] [CrossRef]
- Liao, F.L.; Huang, J.L.; Zhu, W.D. Nonlinear Vibration of a Multi-Degree-of-Freedom Gear Transmission System With Multipiecewise Linear Functions. J. Comput. Nonlinear Dyn. 2023, 18, 041003. [Google Scholar] [CrossRef]
- Huang, J.L.; Wang, T.; Zhu, W.D. An incremental harmonic balance method with two time-scales for quasi-periodic responses of a Van der Pol–Mathieu equation. Int. J. Non-Linear Mech. 2021, 135, 103767. [Google Scholar] [CrossRef]
- Ju, R.; Fan, W.; Zhu, W.D. Comparison between the incremental harmonic balance method and alternating frequency/time-domain method. J. Vib. Acoust. 2021, 143, 024501. [Google Scholar] [CrossRef]
- Huang, J.L.; Su, K.L.R.; Lee, Y.Y.R.; Chen, S. Various bifurcation phenomena in a nonlinear curved beam subjected to base harmonic excitation. Int. J. Bifurc. Chaos 2018, 28, 1830023. [Google Scholar] [CrossRef]
- Huang, J.L.; Su, K.L.R.; Chen, S.H. Precise Hsu’s method for analyzing the stability of periodic solutions of multi-degrees-of-freedom systems with cubic nonlinearity. Comput. Struct. 2009, 87, 1624–1630. [Google Scholar] [CrossRef]
- Friedmann, P.; Hammond, C.E.; Woo, T.H. Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 1977, 11, 1117–1136. [Google Scholar] [CrossRef]
- Hsu, C.S.; Cheng, W.H. Applications of the theory of impulsive parametric excitation and new treatments of general parametric excitation problems. J. Appl. Mech. 1973, 40, 78–86. [Google Scholar] [CrossRef]
- Kahraman, A.; Blankenship, G.W. Effect of involute contact ratio on spur gear dynamics. J. Mech. Des. 1999, 121, 112–118. [Google Scholar] [CrossRef]
- Shen, Y.J.; Yang, S.P.; Liu, X.D. Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method. Int. J. Mech. Sci. 2006, 48, 1256–1263. [Google Scholar] [CrossRef]
First and Second Floquet Multipliers | Moduli of | ||
---|---|---|---|
Near point S1 | 0.89821 | 0.52104, 0.99442 | 0.52104, 0.99442 |
0.89823 | 0.51303, 1.00993 | 0.51303, 1.00993 | |
Near point S2 | 0.76731 | 0.46205, 1.00236 | 0.46205, 1.00236 |
0.76734 | 0.46349, 0.99925 | 0.46349, 0.99925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, F.; Zheng, X.; Huang, J.; Zhu, W. Analysis of Nonlinear Dynamics of a Gear Transmission System Considering Effects of the Extended Tooth Contact. Machines 2025, 13, 155. https://doi.org/10.3390/machines13020155
Liao F, Zheng X, Huang J, Zhu W. Analysis of Nonlinear Dynamics of a Gear Transmission System Considering Effects of the Extended Tooth Contact. Machines. 2025; 13(2):155. https://doi.org/10.3390/machines13020155
Chicago/Turabian StyleLiao, Fulin, Xingyuan Zheng, Jianliang Huang, and Weidong Zhu. 2025. "Analysis of Nonlinear Dynamics of a Gear Transmission System Considering Effects of the Extended Tooth Contact" Machines 13, no. 2: 155. https://doi.org/10.3390/machines13020155
APA StyleLiao, F., Zheng, X., Huang, J., & Zhu, W. (2025). Analysis of Nonlinear Dynamics of a Gear Transmission System Considering Effects of the Extended Tooth Contact. Machines, 13(2), 155. https://doi.org/10.3390/machines13020155