Parameter Identification in FEM of Mechanical Structure Within NPP Based on Seismic Response
Abstract
1. Introduction
2. Model Updating Theory Derivation
3. Numerical Study
3.1. Seismic Response Measurement
3.2. Details in Uncertain Parameter Identification
3.2.1. Imaginary Parts Treatment and Frequency Selection
3.2.2. The Impact of Damping Distribution
3.2.3. A Study with Noisy Data
4. Shaking Table Test Study on a Load-Bearing Pipeline
4.1. Details of the Shaking Table Test
4.2. Dynamic Stiffness Matrix Identification
4.2.1. Measurement Data Preprocessing
4.2.2. Parameter Selection and Updating
4.2.3. Damping Coefficient Identification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Q.Q.; Lu, Z.; Zhao, B.; Qian, J.; Jiang, D. Seismic safety evaluation and resilient analysis of nuclear containment based on failure probability. Eng. Struct. 2024, 317, 118609. [Google Scholar] [CrossRef]
- Tang, Y.C.; Tombaş, E.; Li, C.Z. Effect of nonlinear structural response on seismic fragility and risk of emergency power supply and distribution system in a nuclear power plant. Nucl. Eng. Technol. 2025, 57, 103486. [Google Scholar] [CrossRef]
- Shi, J.F.; Ge, Z.T.; Cao, Y.H.; Gao, J.Y.; Yu, F.; Yao, R.W. Experimental and numerical investigation on the seismic behavior of above ground high density polyethylene pipe in nuclear power plant. Structures 2024, 59, 105781. [Google Scholar] [CrossRef]
- Sen, M. Determining Vibration Characteristics and FE Model Updating of Friction-Welded Beams. Machines 2025, 13, 653. [Google Scholar] [CrossRef]
- Sinha, J.K.; Rao, A.R.; Sinha, R.K. Advantage of the updated model of structure: A case study. Nucl. Eng. Des. 2004, 232, 1–6. [Google Scholar] [CrossRef]
- Sinha, J.K.; Rao, A.R.; Sinha, R.K. Realistic seismic qualification using the updated finite element model for in-core components of reactors. Nucl. Eng. Des. 2006, 236, 232–237. [Google Scholar] [CrossRef]
- Kim, C.H.; Cha, E.J.; Shin, M. Seismic performance assessment of NPP concrete containments considering recent ground motions in South Korea. KSCE Nucl. Eng. Technol. 2022, 54, 386–400. [Google Scholar] [CrossRef]
- ParkJ, B.; Park, N.C.; Lee, S.J.; Park, Y.P.; Choi, Y. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model. Nucl. Eng. Des. 2017, 313, 108–117. [Google Scholar] [CrossRef]
- Chen, H.T.; Zhang, L.; Zhang, T. FRF-based model updating of liquid-filled pipeline system considering tolerance intervals of test errors in the antiresonant frequencies. Eng. Struct. 2024, 307, 117817. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Yu, K.P. Finite element model updating of damped structures using vibration test data under base excitation. J. Sound Vib. 2015, 31, 303–316. [Google Scholar] [CrossRef]
- Lin, R.M.; Zhu, J. Finite element model updating using vibration test data under base excitation. J. Sound Vib. 2007, 303, 596–613. [Google Scholar] [CrossRef]
- Ji, W.; Shao, T. Finite Element Model Updating for Improved Box Girder Bridges with Corrugated Steel Webs Using the Response Surface Method and Fmincon Algorithm. KSCE J. Civ. Eng. 2021, 25, 586–602. [Google Scholar] [CrossRef]
- Abedin, M.; Basalo, F. Kian, Nafiseh. Bridge load testing and damage evaluation using model updating method. Eng. Struct. 2022, 252, 113648. [Google Scholar] [CrossRef]
- Guan, Z.; Yang, D.; Yi, T.; Li, W.; Li, C. Bridge finite element model updating using stochastic vehicle-induced static response monitoring data. Eng. Struct. 2024, 301, 117280. [Google Scholar] [CrossRef]
- Saidin, S.; Sakhiah, A.; Adiza, J.; Muhamad, A. Operational modal analysis and finite element model updating of ultra-high-performance concrete bridge based on ambient vibration test. Case Stud. Constr. Mater. 2022, 16, e01117. [Google Scholar] [CrossRef]
- Fu, Y.H.; Wang, Y. Updating numerical models towards time domain alignment of structural dynamic responses with a limited number of sensors. Mech. Syst. Signal Process. 2023, 204, 110759. [Google Scholar] [CrossRef]
- Vella, C.; Prudhomme, S. Proper generalized decomposition surrogate modeling with application to the identification of Rayleigh damping parameters. Comput. Struct. 2025, 315, 107826. [Google Scholar] [CrossRef]
- Xue, R.Y.; Yu, S.R.; Zhang, X.H. Theoretical analysis and experimental study on the dynamic behavior of a valve pipeline system during an earthquake. Earthq. Eng. Eng. Vib. 2021, 20, 969–979. [Google Scholar] [CrossRef]









| Group No. | Element Numbers | True Values of E (Pa) | Initial Estimations of E (Pa) | % Deviation in E |
|---|---|---|---|---|
| 1 | 1 | 1.850 × 1010 | 1.850 × 1010 | 0.0% |
| 2 | 2, 3 | 1.480 × 1010 | 1.850 × 1010 | 20.0% |
| 3 | 4, 5 | 1.110 × 1010 | 1.850 × 1010 | 40.0% |
| 4 | 6, 7 | 1.295 × 1010 | 1.850 × 1010 | 30.0% |
| 5 | 8, 9 | 1.480 × 1010 | 1.850 × 1010 | 20.0% |
| 6 | 10 | 1.850 × 1010 | 1.850 × 1010 | 0.0% |
| Node Type | Node Numbers | True Values of m (kg) | Initial Estimations of m (kg) | % Deviation in m |
|---|---|---|---|---|
| Fixed node | 1, 11 | 80 | 743 | 828.7% |
| Non-fixed node | 2~10 | 890 | 743 | 16.5% |
| Levels of Damping | Damping Ratio (ξ) | α | β |
|---|---|---|---|
| Lightly damping | 2% | 1.41 | 2.15 × 10−4 |
| Moderately damping | 5% | 3.53 | 5.88 × 10−4 |
| Highly damping | 10% | 7.05 | 1.176 × 10−3 |
| Group No. | Element Numbers | α | β |
|---|---|---|---|
| 1 | 1 | 3.53 | 7.64 × 10−4 |
| 2 | 2, 3 | 3.53 | 7.05 × 10−4 |
| 3 | 4, 5 | 3.53 | 5.88 × 10−4 |
| 4 | 6, 7 | 3.53 | 5.88 × 10−4 |
| 5 | 8, 9 | 3.53 | 7.05 × 10−4 |
| 6 | 10 | 3.53 | 8.23 × 10−4 |
| Case No. | Solution | E2 (Pa) | E3 (Pa) | E4 (Pa) | E5 (Pa) | mf (kg) | |
|---|---|---|---|---|---|---|---|
| 1 | Real part, discarding damping | updated results | 1.488 × 1010 | 1.119 × 1010 | 1.305 × 1010 | 1.488 × 1010 | 79.55 |
| % deviation | 0.54% | 0.81% | 0.77% | 0.54% | 0.56% | ||
| 2 | Modulus, discarding damping | updated results | 1.522 × 1010 | 1.130 × 1010 | 1.321 × 1010 | 1.520 × 1010 | 1125.8 |
| % deviation | 2.83% | 1.80% | 2.01% | 2.70% | 1306.25% | ||
| 3 | Real part, retaining damping | updated results | 1.474 × 1010 | 1.133 × 1010 | 1.319 × 1010 | 1.477 × 1010 | 165.4 |
| % deviation | 0.40% | 2.07% | 1.85% | 0.20% | 106.75% |
| Case No. | Frequency Region | E2 (Pa) | E3 (Pa) | E4 (Pa) | E5 (Pa) | mf (kg) | |
|---|---|---|---|---|---|---|---|
| 1 | 5~50 rad/s | updated results | 1.488 × 1010 | 1.119 × 1010 | 1.305 × 1010 | 1.488 × 1010 | 79.55 |
| % deviation | 0.54% | 0.81% | 0.77% | 0.54% | 0.56% | ||
| 2 | 50~120 rad/s | updated results | 1.482 × 1010 | 1.114 × 1010 | 1.300 × 1010 | 1.482 × 1010 | 94.4 |
| % deviation | 0.14% | 0.36% | 0.38% | 0.14% | 18% | ||
| 3 | 5~120 rad/s | updated results | 1.481 × 1010 | 1.112 × 1010 | 1.297 × 1010 | 1.481 × 1010 | 6.86 |
| % deviation | 0.07% | 0.18% | 0.15% | 0.07% | 91.42% |
| Case No. | Damping Distribution | E2 (Pa) | E3 (Pa) | E4 (Pa) | E5 (Pa) | mf (kg) | |
|---|---|---|---|---|---|---|---|
| 1 | Lightly damping | updated results | 1.486 × 1010 | 1.080 × 1010 | 1.263 × 1010 | 1.486 × 1010 | 81.55 |
| % deviation | 0.41% | 2.70% | 2.47% | 0.41% | 1.93% | ||
| 2 | Moderately damping | updated results | 1.488 × 1010 | 1.119 × 1010 | 1.305 × 1010 | 1.488 × 1010 | 79.55 |
| % deviation | 0.54% | 0.81% | 0.77% | 0.54% | 0.56% | ||
| 3 | Highly damping | updated results | 1.490 × 1010 | 1.121 × 1010 | 1.307 × 1010 | 1.490 × 1010 | 83.79 |
| % deviation | 0.67% | 0.99% | 0.92% | 0.67% | 4.73% | ||
| 4 | Non-proportional damping | updated results | 1.487 × 1010 | 1.114 × 1010 | 1.302 × 1010 | 1.488 × 1010 | 77.8 |
| % deviation | 0.47% | 0.36% | 0.54% | 0.54% | 2.75% |
| E2 (Pa) | E3 (Pa) | E4 (Pa) | E5 (Pa) | mf (kg) | |
|---|---|---|---|---|---|
| Updated results | 1.492 × 1010 | 1.058 × 1010 | 1.232 × 1010 | 1.434 × 1010 | 143.73 |
| % deviation | 0.81% | 4.68% | 4.86% | 3.11% | 79.66% |
| Diameter | Wall Thickness | The Modulus of Elasticity | Weight | |
|---|---|---|---|---|
| Galvanized welded pipe | 48 mm | 3.5 mm | 2.35 × 1011 Pa | 3.8 kg/m−3 |
| Updating Parameters | Frequency Points Used for Updating | Initial Value | Updated Value |
|---|---|---|---|
| W | 60 rad/s, 65 rad/s, 68 rad/s | 1 × 105 N m2 | 2.14 × 104 N m2 |
| Kr1 | 2 × 105 N m/rad | 7.787 × 105 N m/rad | |
| Kr2 | 2 × 105 N m/rad | 1.397 × 105 N m/rad |
| Input Layer | Hidden Layer | Transfer Function | Output Layer |
|---|---|---|---|
| 10 | 28 | tansig, logsig | 4 |
| Element Numbers | Damping Coefficients | Value Range | Updated Result |
|---|---|---|---|
| 1, 2, 3, 4, 5, 6, 7, 9, 10, 11 | α | 0.8~1.2 | 1.018 |
| β | 6 × 10−5~9 × 10−5 | 8.08 × 10−5 | |
| 8 | α | 0.8~1.2 | 1.018 |
| β | 1 × 10−4~3 × 10−4 | 1.428 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Li, P.; Zhao, P.; Xue, R.; Li, L.; Geng, P. Parameter Identification in FEM of Mechanical Structure Within NPP Based on Seismic Response. Machines 2025, 13, 987. https://doi.org/10.3390/machines13110987
Li G, Li P, Zhao P, Xue R, Li L, Geng P. Parameter Identification in FEM of Mechanical Structure Within NPP Based on Seismic Response. Machines. 2025; 13(11):987. https://doi.org/10.3390/machines13110987
Chicago/Turabian StyleLi, Genfei, Peiyue Li, Pengju Zhao, Ruiyuan Xue, Linbin Li, and Pengcheng Geng. 2025. "Parameter Identification in FEM of Mechanical Structure Within NPP Based on Seismic Response" Machines 13, no. 11: 987. https://doi.org/10.3390/machines13110987
APA StyleLi, G., Li, P., Zhao, P., Xue, R., Li, L., & Geng, P. (2025). Parameter Identification in FEM of Mechanical Structure Within NPP Based on Seismic Response. Machines, 13(11), 987. https://doi.org/10.3390/machines13110987
