Research on Multi-Objective Low-Carbon Flexible Job Shop Scheduling Based on Improved NSGA-II
Abstract
:1. Introduction
2. MOFJSP Scheduling Model
2.1. Description of MOFJSP Problem
2.2. MOFJSP Mathematical Model
2.2.1. The Model of Makespan
2.2.2. The Model of Cost
2.2.3. The Model of Carbon Emission
3. The ASA-NSGA-EE Algorithm
3.1. Population Initialization
3.2. Encoding and Decoding
3.3. Fast Non-Dominated Sorting and Crowding Distance Calculation
3.4. Improved Tournament Selection
3.5. Crossover and Mutation Operation Design Program
3.6. Improved Adaptive Crossover and Mutation Operation
3.7. Improved Elite Retention Strategy
4. Test Simulation
4.1. Performance Evaluation Index of Algorithm
4.2. Enterprise Case
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Destouet, C.; Tlahig, H.; Bettayeb, B.; Mazari, B. Flexible job shop scheduling problem under Industry 5.0: A survey on human reintegration, environmental consideration and resilience improvement. J. Manuf. Syst. 2023, 67, 155–173. [Google Scholar] [CrossRef]
- Gao, K.; Cao, Z.; Zhang, L.; Chen, Z.; Han, Y.; Pan, Q. A review on swarm intelligence and evolutionary algorithms for solving flexible job shop scheduling problems. IEEE/CAA J. Autom. Sin. 2019, 6, 904–916. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S.; Sethi, R. The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1976, 1, 117–129. [Google Scholar] [CrossRef]
- Fattahi, P.; Bagheri Rad, N.; Daneshamooz, F.; Ahmadi, S. A new hybrid particle swarm optimization and parallel variable neighborhood search algorithm for flexible job shop scheduling with assembly process. Assem. Autom. 2020, 40, 419–432. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A comprehensive survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Amirteimoori, A.; Mahdavi, I.; Solimanpur, M.; Ali, S.S.; Tirkolaee, E.B. A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation. Comput. Ind. Eng. 2022, 173, 108672. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Jeon, H.W.; Lee, S.; Wang, C. Minimizing total energy cost and tardiness penalty for a scheduling-layout problem in a flexible job shop system: A comparison of four metaheuristic algorithms. Comput. Ind. Eng. 2020, 141, 106295. [Google Scholar] [CrossRef]
- Demir, H.I.; Erden, C. Dynamic integrated process planning, scheduling and due-date assignment using ant colony optimization. Comput. Ind. Eng. 2020, 149, 106799. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Ahmed, R.; Nazir, A.; Mahadzir, S.; Shorfuzzaman, M.; Islam, J. Niching grey wolf optimizer for multimodal optimization problems. Appl. Sci. 2021, 11, 4795. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Xin, B.; Dou, L. Solving multi-objective multi-stage weapon target assignment problem via adaptive NSGA-II and adaptive MOEA/D: A comparison study. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 3132–3139. [Google Scholar]
- Kalyanmoy, D. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Z.; Chen, W.; Hu, Z. Aerial Accessory Flexible Job Shop Scheduling Optimization Considering Carbon Low Emissions. Aeronaut. Sci. Technol. 2024, 35, 47–57. [Google Scholar]
- Jiang, Y.; Ji, W.; He, X.; Su, X. Low-carbon Scheduling of Multi-objective Flexible Job-shop Based on Improved NSGA-Ⅱ. China Mech. Eng. 2022, 33, 2564–2577. [Google Scholar] [CrossRef]
- Liang, X.; Chen, J.; Gu, X.; Huang, M. Improved adaptive non-dominated sorting genetic algorithm with elite strategy for solving multi-objective flexible job-shop scheduling problem. IEEE Access 2021, 9, 106352–106362. [Google Scholar] [CrossRef]
- Ghosh, D.; Upadhayay, A.; Ansari, Q.H. A Trust-Region Interior-Point Technique to Solve Multi-Objective Optimization Problems and Its Application to A Tuberculosis Optimal Control Problem. J. Nonlinear Var. Anal. 2022, 6, 675–691. [Google Scholar]
- Anh, L.Q.; Le, H.M.; Nguyen, K.T.; Thanh, L.X. AN ALGORITHMIC APPROACH TO THE ROBUST DOWNGRADING MAKESPAN SCHEDULING PROBLEM. Appl. Set-Valued Anal. Optim. 2024, 6, 263–273. [Google Scholar]
- Yahui, W.; Ling, S.; Cai, Z.; Liuqiang, F.; Xiangjie, J. NSGA-II algorithm and application for multi-objective flexible workshop scheduling. J. Algorithms Comput. Technol. 2020, 14, 1748302620942467. [Google Scholar] [CrossRef]
- Vital-Soto, A.; Baki, M.F.; Azab, A. A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility. Flex. Serv. Manuf. J. 2023, 35, 626–668. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X. An improved NSGA-II algorithm based on crowding distance elimination strategy. Int. J. Comput. Intell. Syst. 2019, 12, 513–518. [Google Scholar] [CrossRef]
- Ren, W.; Wen, J.; Yan, Y.; Hu, Y.; Guan, Y.; Li, J. Multi-objective optimisation for energy-aware flexible job-shop scheduling problem with assembly operations. Int. J. Prod. Res. 2021, 59, 7216–7231. [Google Scholar] [CrossRef]
- Luan, F.; Zhao, H.; Liu, S.Q.; He, Y.; Tang, B. Enhanced NSGA-II for multi-objective energy-saving flexible job shop scheduling. Sustain. Comput. Inform. Syst. 2023, 39, 100901. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, G.; Wang, X. Intelligent Algorithm of Flexible Job Shop Scheduling and Its Application; Huazhong University of Science and Technology Press: Wuhan, China, 2012; pp. 154–196. [Google Scholar]
- Zhang, C.; Guan, Z.; Liu, Q.; Shao, X.; Li, P. New Scheduling Type Applied to Solving Job-shop Scheduling Problem. J. Mech. Eng. 2008, 44, 24–31. [Google Scholar] [CrossRef]
- Zheng, J.; Li, K.; Li, M.; Wen, S. Adaptive Neighbor Multi-Objective Evolutionary Algorithm Based on Hypervolume Indicator. J. Comput. Res. Dev. 2012, 49, 312–326. [Google Scholar]
- Shang, K.; Ishibuchi, H.; He, L.; Pang, L.M. A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 2020, 25, 1–20. [Google Scholar] [CrossRef]
Notation | Descriptions |
---|---|
Carbon emission factor | |
A large positive number | |
The operation of workpiece | |
Product material cost | |
Machine processing cost | |
Machine processing energy consumption | |
Number of startups and shutdowns for machine | |
Energy consumption during machine startup and shutdown | |
Processing time of the operation of workpiece on machine | |
Machine idle energy consumption | |
The start time of the workpiece on machine | |
Processing cost of the operation of workpiece on machine | |
Energy consumption of machine per unit time during processing | |
Energy consumption of machine during startup and shutdown | |
The completion time of the workpiece on machine k | |
Idle energy consumption of machine per unit of time | |
Whether operation is completed on machine k is 0–1 variable | |
The processing sequence of operation and operation |
Instance | NSGA-II | ASA-NSGA-EE | MOGWO | |||||||
---|---|---|---|---|---|---|---|---|---|---|
IGD | HV | Cov1 | Cov1 | IGD | HV | Cov2 | Cov2 | IGD | HV | |
MK01 | 0.0513 | 0.9565 | 0.152 | 0.649 | 0.0393 | 0.9604 | 0.964 | 0.036 | 0.0702 | 0.9020 |
MK02 | 0.0885 | 0.9632 | 0 | 1 | 0.0077 | 1.1216 | 1 | 0 | 0.0584 | 0.9768 |
MK03 | 0.2093 | 0.8688 | 0 | 0.923 | 0.0406 | 1.2565 | 0.980 | 0 | 0.0914 | 0.9796 |
MK04 | 0.0470 | 0.9700 | 0.124 | 0.734 | 0.0115 | 1.0408 | 0.904 | 0.083 | 0.0451 | 0.9637 |
MK05 | 0.0353 | 0.9930 | 0 | 1 | 0.0011 | 1.0933 | 0.965 | 0 | 0.0271 | 1.0252 |
MK06 | 0.6914 | 0.2734 | 0 | 1 | 0.0199 | 1.3113 | 1 | 0 | 0.1664 | 1.0756 |
MK07 | 0.2416 | 0.8843 | 0 | 1 | 0.0249 | 1.2276 | 0.9808 | 0 | 0.1232 | 0.8893 |
MK08 | 0.0849 | 1.0930 | 0.079 | 0.679 | 0.0162 | 1.1718 | 0.914 | 0.02 | 0.1899 | 0.9055 |
MK09 | 0.3856 | 0.5194 | 0 | 1 | 0.0042 | 1.3017 | 0.930 | 0 | 0.164 | 0.9788 |
MK10 | 0.6309 | 0.3912 | 0 | 1 | 0.0053 | 1.3146 | 1 | 0 | 0.1680 | 1.0337 |
Job No. | Cost | Operation No. | Machine No. | Processing Time/min | Processing Energy/kW |
---|---|---|---|---|---|
Job1 | 250 | 1 | 1, 2, 3 | 10.8, 15, 11.7 | 0.6, 0.88, 0.78 |
2 | 1, 2, 3 | 10, 7.5, 9.2 | 0.6, 0.44, 0.6 | ||
3 | 4, 5 | 25.9, 30 | 2.8, 3.3 | ||
4 | 6, 7 | 55.9, 51.7 | 17.2, 14.5 | ||
5 | 8 | 5.8 | 0.78 | ||
6 | 9, 10 | 23.4, 20 | 8.8, 7 | ||
Job2 | 500 | 1 | 1, 2, 3 | 13.3, 12.5, 14.2 | 0.8, 0.73, 0.95 |
2 | 1, 2, 3 | 11.7, 15, 13.3 | 0.7, 0.9, 0.89 | ||
3 | 4, 5 | 27.5, 30.9 | 3, 3.3 | ||
4 | 6, 7 | 43.4, 46.7 | 13.6, 14.2 | ||
5 | 8 | 7.5 | 0.1 | ||
6 | 9, 10 | 26.7, 25.9 | 10, 9.1 | ||
Job3 | 600 | 1 | 1, 2, 3 | 18.3, 22.5, 20.9 | 1, 1.3, 1.4 |
2 | 1, 2, 3 | 23.4, 25.9, 28.4 | 1.4, 1.5, 1.9 | ||
3 | 4, 5 | 38.4, 33.4 | 4.2, 3.6 | ||
4 | 6, 7 | 55.9, 62.6 | 17.2, 17.4 | ||
5 | 8 | 6.7 | 0.09 | ||
6 | 9, 10 | 34.2, 40.9 | 12.8, 14.3 | ||
Job4 | 700 | 1 | 1, 2, 3 | 20, 23.4, 17.5 | 1.17, 1.37, 1.17 |
2 | 1, 2, 3 | 21.7, 25.9, 18.3 | 1.3, 1.5, 1.2 | ||
3 | 4, 5 | 35, 40.9 | 3.8, 4.4 | ||
4 | 11 | 5 | 1 | ||
5 | 6, 7 | 45, 48.4 | 13.9, 13.3 | ||
6 | 8 | 5 | 0.7 | ||
7 | 10 | 35 | 12.3 | ||
Job5 | 1850 | 1 | 1, 2, 3 | 33.4, 36.7, 35 | 1.9, 2.1, 2.34 |
2 | 1, 2, 3 | 39.2, 38.4, 39.2 | 2.3, 2.24, 2.6 | ||
3 | 4, 5 | 48.4, 53.4 | 5.2, 5.8 | ||
4 | 11 | 32.5 | 6.5 | ||
5 | 6, 7 | 81.8, 90.1 | 25.2, 24.8 | ||
6 | 8 | 5 | 0.7 | ||
7 | 9, 10 | 148.46, 162.6 | 55, 56.9 | ||
Job6 | 1800 | 1 | 8 | 9.2 | 0.12 |
2 | 1, 2, 3 | 34.2, 40, 36.7 | 1.99, 2.3, 2.45 | ||
3 | 1, 2, 3 | 30, 35, 30 | 1.75, 2.04, 2 | ||
4 | 4, 5 | 16.7, 20.9 | 1.8, 1.9 | ||
5 | 11 | 17.5 | 3.5 | ||
6 | 6, 7 | 81.7, 86.7 | 25.1, 23.8 | ||
Job7 | 300 | 1 | 12, 13, 14, 15 | 60, 61.7, 75.9, 80.1 | 7.5, 7.7, 11.4, 12 |
2 | 1, 2, 3 | 15, 18.3, 14.2 | 0.88, 1, 0.95 | ||
3 | 1, 2, 3 | 17.5, 21.7, 18.3 | 1.02, 1.3, 1.2 | ||
4 | 6,7 | 55.9, 61.7 | 17.2, 17 | ||
5 | 12, 13, 14, 15 | 52.5, 55, 70.1, 67.6 | 6.6, 6.89, 10.5, 10 | ||
Job8 | 600 | 1 | 11 | 12.5 | 2.5 |
2 | 1, 2, 3 | 32.5, 38.4, 34.2 | 1.9, 2.2, 2.28 | ||
3 | 8 | 18.3 | 0.2 | ||
4 | 1, 2, 3 | 24.2, 27.5, 22.5 | 1.4, 1.6, 1.5 | ||
5 | 10 | 8.3 | 2.9 | ||
6 | 12, 13, 14, 15 | 94.2, 95.9, 67.6, 71.7 | 11.8, 11.99, 10, 10.8 | ||
Job9 | 600 | 1 | 6, 7 | 75.9, 105.9 | 23.4, 29.1 |
2 | 1, 2, 3 | 35.9, 38.4, 35 | 2.1, 2.24, 2.3 | ||
3 | 8 | 25.9 | 0.3 | ||
4 | 1, 2, 3 | 29.2, 30.9, 25.9 | 1.7, 1.8, 1.7 | ||
5 | 10 | 8.3 | 2.9 | ||
6 | 12, 13, 14, 15 | 103.4, 100.9, 65.9, 77.6 | 12.9, 12.6, 9.88, 11.6 | ||
Job10 | 200 | 1 | 6, 7 | 81.7, 110.1 | 25.2, 30.3 |
2 | 1, 2, 3 | 21.7, 24.2, 25.9 | 1.27, 1.4, 1.7 | ||
3 | 1, 2, 3 | 26.7, 30.9, 27.5 | 1.56, 1.8, 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Z.; Lu, Y.; Lv, L. Research on Multi-Objective Low-Carbon Flexible Job Shop Scheduling Based on Improved NSGA-II. Machines 2024, 12, 590. https://doi.org/10.3390/machines12090590
Mei Z, Lu Y, Lv L. Research on Multi-Objective Low-Carbon Flexible Job Shop Scheduling Based on Improved NSGA-II. Machines. 2024; 12(9):590. https://doi.org/10.3390/machines12090590
Chicago/Turabian StyleMei, Zheyu, Yujun Lu, and Liye Lv. 2024. "Research on Multi-Objective Low-Carbon Flexible Job Shop Scheduling Based on Improved NSGA-II" Machines 12, no. 9: 590. https://doi.org/10.3390/machines12090590
APA StyleMei, Z., Lu, Y., & Lv, L. (2024). Research on Multi-Objective Low-Carbon Flexible Job Shop Scheduling Based on Improved NSGA-II. Machines, 12(9), 590. https://doi.org/10.3390/machines12090590