Pad Alignment Methods and Their Impact on Large Hydrostatic Bearing Precision
Abstract
:1. Introduction
- Leveling the pads using information about pressure from bearing recesses. The advantage of this method is that it can work online. The disadvantage is that the alignment is carried out based on indirect information and an estimation of the film thickness and could be compromised by the precision of machined sliding surfaces and pressure sensors.
- Leveling based on the coordinate measurement machine (CMM). Such systems are accurate (as the only method, its accuracy could be certified), but not portable, mainly in the case of large scales, and the leveling process can be time-consuming. Optical coordinate measurement machines can overcome the problem associated with portability and flexibility, ensuring sufficient accuracy [29]. Such methods offer the potential for greater alignment accuracy [30].
2. Materials and Methods
2.1. Prediction of Lubricating Film Thickness
2.2. Experimental Hydrostatic Bearing Device
2.3. Conventional Measurement Instruments
2.4. Pressure Method
2.5. Optical Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Girard, L.D. Hydraulique Appliquée: Nouveau Système de Locomotion sur les Chemins de Fer; Bachelier: Paris, France, 1852. [Google Scholar]
- Rowe, W.B. Advances in Hydrostatic asnd Hybrid Bearing Technology. Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci. 1989, 203, 225–242. [Google Scholar] [CrossRef]
- Rowe, W.B. Application of Hydrostatic Bearings. In Hydrostatic and Hybrid Bearing Design; Elsevier: Amsterdam, The Netherlands, 1983. [Google Scholar] [CrossRef]
- Bernstein, R.A.; McCarthy, P.J.; Raybould, K.; Bigelow, B.C.; Bouchez, A.H.; Filgueira, J.M.; Jacoby, G.; Johns, M.; Sawyer, D.; Shectman, S.; et al. Overview and status of the Giant Magellan Telescope project. In Ground-Based and Airborne Telescopes V; SPIE: Bellingham, WA, USA, 2014; ISBN 9780819496133. [Google Scholar] [CrossRef]
- Wasilczuk, M. Friction and Lubrication of Large Tilting-Pad Thrust Bearings. Lubricants 2015, 3, 164–180. [Google Scholar] [CrossRef]
- Rippel, H.C. Cast Bronze Hydrostatic Bearing Design Manual; Cast Bronze Bearing Institute: Cleveland, OH, USA, 1969. [Google Scholar]
- Loeb, A.M. The Determination of the Characteristics of Hydrostatic Bearings through the use of the Electric Analog Field Plotter. ASLE Trans. 1958, 1, 217–224. [Google Scholar] [CrossRef]
- Michalec, M.; Ondra, M.; Svoboda, M.; Chmelík, J.; Zeman, P.; Svoboda, P.; Jackson, R.L. A Novel Geometry Optimization Approach for Multi-Recess Hydrostatic Bearing Pad Operating in Static and low-Speed Conditions Using CFD Simulation. Tribol. Lett. 2023, 71, 52. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Cheng, Q.; Zhao, Y.; Wang, Y.; Cai, L. Analysis and optimization of nonlinear carrying performance of hydrostatic ram based on finite difference method and Runge–Kutta method. Adv. Mech. Eng. 2019, 11, 1687814019856128. [Google Scholar] [CrossRef]
- Bouyer, J.; Wodtke, M.; Fillon, M. Experimental research on a hydrodynamic thrust bearing with hydrostatic lift pockets: Influence of lubrication modes on bearing performance. Tribol. Int. 2022, 165, 107253. [Google Scholar] [CrossRef]
- Wen, S.; Huang, P. Principles of Tribology; Wiley: Hoboken, NJ, USA, 2012; ISBN 9781119214892. [Google Scholar]
- Bassani, R.; Piccigallo, B. Hydrostatic Lubrication; Elsevier: Amsterdam, The Netherlands, 1992; ISBN 044488498. [Google Scholar]
- Neichel, B.; Mouillet, D.; Gendron, E.; Correia, C.; Sauvage, J.F.; Fusco, T. Overview of the Eu-ropean Extremely Large Telescope and its instrument suite. arXiv 2018, arXiv:1812.06639. [Google Scholar]
- Stachowiak, G.; Batchelor, A.W. Engineering Tribology, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 2006. [Google Scholar]
- Hamrock, B.J.; Schmid, S.R.; Jacobson, B.O. Fundamentals of Fluid Film Lubrication, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0824753712. [Google Scholar]
- Fang, C.; Huo, D.; Huang, X. A comprehensive analysis of factors affecting the accuracy of the precision hydrostatic spindle with mid-thrust bearing layout. Int. J. Adv. Manuf. Technol. 2021, 114, 949–967. [Google Scholar] [CrossRef]
- Marchiori, G.; Rampini, F.; Ghedin, L.; Bressan, R. ELT design status: The most powerful ground telescope. In Ground-Based and Airborne Telescopes VII; SPIE: Bellingham, WA, USA, 2018; Volume 10700, ISSN 1996756X. [Google Scholar] [CrossRef]
- Michalec, M.; Svoboda, P.; Křupka, I.; Hartl, M. A review of the design and optimization of large-scale hydrostatic bearing systems. Eng. Sci. Technol. Int. J. 2021, 24, 936–958. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.; Zhang, C.; Zha, J.; Wang, T. Influence of geometric errors of guide rails and table on motion errors of hydrostatic guideways under quasi-static condition. Int. J. Mach. Tools Manuf. 2018, 125, 55–67. [Google Scholar] [CrossRef]
- Khonsari, M.M.; Booser, E.R. Applied Tribology; Wiley: Hoboken, NJ, USA, 2017; ISBN 9781118637241. [Google Scholar] [CrossRef]
- Jang, J.Y.; Khonsari, M.M. On the Characteristics of Misaligned Journal Bearings. Lubricants 2015, 3, 27–53. [Google Scholar] [CrossRef]
- Andre’s, L.S. Effects of Misalignment on Turbulent Flow Hybrid Thrust Bearings. J. Tribol. 2002, 124, 212–219. [Google Scholar] [CrossRef]
- Dhanola, A.; Garg, H.C. Tribological challenges and advancements in wind turbine bearings: A review. Eng. Fail. Anal. 2020, 118, 104885. [Google Scholar] [CrossRef]
- Van Beek, A.; Segal, A. Rubber supported hydrostatic thrust bearings with rigid bearing surfaces. Tribol. Int. 1997, 30, 47–52. [Google Scholar] [CrossRef]
- Michalec, M.; Polnický, V.; Foltýn, J.; Svoboda, P.; Šperka, P.; Hurník, J. The prediction of large-scale hydrostatic bearing pad misalignment error and its compensation using compliant support. Precis. Eng. 2022, 75, 67–79. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, T.; Dai, L. Research on straightness calibration method of straight edge working face based on electronic level. In Proceedings of the MATEC Web Confernces: 5th International Conference on Advances in Materials, Machinery, Electronics (AMME 2022), Dali, China, 13–15 May 2022; Volume 363, p. 01013. [Google Scholar] [CrossRef]
- Elmelegy, A.; Zahwi, S. Comparative study of error determination of machine tools. Int. J. Adv. Manuf. Technol. 2023, 124, 4575–4602. [Google Scholar] [CrossRef]
- Gunnels, S. The Giant Magellan Telescope (GMT): Hydrostatic Constraints. In Ground-Based and Airborne Telescopes III; Stepp, L.M., Gilmozzi, R., Hall, H.J., Eds.; SPIE: Bellingham, WA, USA, 2010; Volume 7733. [Google Scholar] [CrossRef]
- Michalec, M.; Hurník, J.; Foltýn, J.; Svoboda, P. Contactless measurement of hydrostatic bearing lubricating film using optical point tracking method. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2023, 237, 76–84. [Google Scholar] [CrossRef]
- Zha, J.; Xue, F.; Chen, Y. Straightness error modeling and compensation for gantry type open hydrostatic guideways in grinding machine. Int. J. Mach. Tools Manuf. 2017, 112, 1–6. [Google Scholar] [CrossRef]
- Loeb, A.M.; Rippel, H.C. Determination of Optimum Proportions for Hydrostatic Bearings. ASLE Trans. 1958, 1, 241–247. [Google Scholar] [CrossRef]
Max. Range | Precision | |
---|---|---|
Force gauge | 14.7 kN | ±0.003 kN |
Flowmeter | 15 L/min | ±0.2 L/min |
Proximity sensor | 3 mm | ±0.01 mm |
Pressure gauge | 160 bar | ±0.56 bar |
Thermometer | 100 °C | ±1 °C |
Influence on Pressure | |
---|---|
Effect of coefficient reading error | ±0.684 bar |
Effect of pressure measurement error | ±0.56 bar |
Effect of manufacturing tolerance | ±0.275 bar |
Effect of force gauge measurement error | ±0.006 bar |
Total pressure measurement error | ±1.525 bar |
Influence on film thickness | |
Effect of proximity sensor measurement error | ±0.01 mm |
Effect of coefficient reading error | ±0.0057 mm |
Effect of temperature error | ±0.0027 mm |
Effect of flowmeter measurement error | ±0.0018 mm |
Effect of manufacturing tolerance | ±0.0015 mm |
Effect of force gauge measurement error | ±0.00005 mm |
Total thickness measurement error | ±0.02164 mm |
OCMM Method | Pressure Method | Conventional Method | |
---|---|---|---|
Accuracy of alignment | h ± 0.01 mm | h ± 0.016 mm | h ± 0.06 mm |
Deviation of film thickness | 7.4% | 12.1% | 45.3% |
Repeatability | High | High | Low |
Alignment difficulty | Medium | Low | High |
Time consumption | Medium | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foltýn, J.; Hurník, J.; Michalec, M.; Svoboda, P.; Křupka, I.; Hartl, M. Pad Alignment Methods and Their Impact on Large Hydrostatic Bearing Precision. Machines 2024, 12, 549. https://doi.org/10.3390/machines12080549
Foltýn J, Hurník J, Michalec M, Svoboda P, Křupka I, Hartl M. Pad Alignment Methods and Their Impact on Large Hydrostatic Bearing Precision. Machines. 2024; 12(8):549. https://doi.org/10.3390/machines12080549
Chicago/Turabian StyleFoltýn, Jan, Jakub Hurník, Michal Michalec, Petr Svoboda, Ivan Křupka, and Martin Hartl. 2024. "Pad Alignment Methods and Their Impact on Large Hydrostatic Bearing Precision" Machines 12, no. 8: 549. https://doi.org/10.3390/machines12080549
APA StyleFoltýn, J., Hurník, J., Michalec, M., Svoboda, P., Křupka, I., & Hartl, M. (2024). Pad Alignment Methods and Their Impact on Large Hydrostatic Bearing Precision. Machines, 12(8), 549. https://doi.org/10.3390/machines12080549