Developmental and Experimental Study on a Double-Excitation Ultrasonic Elliptical Vibration-Assisted Cutting Device
Abstract
:1. Introduction
2. Design of D-UEVC Device
2.1. Mechanistic Analysis of Double Excitation Elliptical Vibrations
2.2. The Structure of the UEVC Device
3. Structural Dynamics Analysis of D-UEVC
3.1. Modal Analysis of D-UEVC
3.2. Response Analysis of D-UEVC
4. Experimental Validation of D-UEVC Devices
4.1. Impedance Characterization Experiment
4.2. Vibration Trajectory Measurement
4.3. Cutting Experiment of Inconel 718
5. Conclusions
- A D-UEVC device with two excitation sources arranged at 90° was designed through theoretical calculations, yielding a resonant frequency of 36.5 KHz. Finite element analysis validated the device’s ability to produce an adjustable elliptical locus at the tool tip.
- An experimental verification of the vibration characteristics of the D-UEVC device was conducted, including tests on the elliptical trajectory at the tool tip under different voltages and excitation phase differences. These experiments confirmed the theoretical model and simulation analysis.
- Cutting experiments were performed on Inconel 718 rods using both conventional cutting (CC) and ultrasonic elliptical vibration cutting (UEVC) methods. The results showed that the surface roughness after CC processing was approximately Ra = 0.36 μm, while the surface roughness after UEVC processing was Ra = 0.215 μm. The utilization of the D-UEVC device led to a reduction of approximately 40% in the surface roughness of Inconel 718.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shamoto, E.; Moriwaki, T. Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting. CIRP Ann. 1999, 48, 441–444. [Google Scholar] [CrossRef]
- Su, Q.; Su, G.; Shen, X.; Wang, B.; Du, J.; Zhang, P. Design of an ultrasonic elliptical vibration cutting tool based on an eccentric cone. Int. J. Adv. Manuf. Technol. 2023, 124, 1003–1016. [Google Scholar] [CrossRef]
- Ding, H.; Chen, S.-J.; Ibrahim, R.; Cheng, K. Investigation of the size effect on burr formation in two-dimensional vibration-assisted micro end milling. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 2032–2039. [Google Scholar] [CrossRef]
- Ding, K.; Li, Q.; Lei, W.; Zhang, C.; Xu, M.; Wang, X. Design of a defined grain distribution brazed diamond grinding wheel for ultrasonic assisted grinding and experimental verification. Ultrasonics 2022, 118, 106577. [Google Scholar] [CrossRef]
- Bin, F.; Zhonghang, Y.; Depeng, L.; Liying, G. Effect of ultrasonic vibration on finished quality in ultrasonic vibration assisted micromilling of Inconel718. Chin. J. Aeronaut. 2021, 34, 209–219. [Google Scholar]
- Ma, C.X.; Shamoto, E.; Moriwaki, T. Study on the thrust cutting force in ultrasonic elliptical vibration cutting. In Materials Science Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2004; Volume 471, pp. 396–400. [Google Scholar]
- Li, Y.; Yang, Y.; Wang, Y.; Gao, F. Study on the Simulation and Experiment of Ultrasonic-assisted Vibration Drilling of, Ti6Al4V. J. Phys. Conf. Ser. 2020, 2242, 012011. [Google Scholar] [CrossRef]
- Chen, J.; Xu, M.; Xie, C.; Du, J.; Dai, H.; Fang, Q. A nonuniform moving heat source model for temperature simulation in ultrasonic-assisted cutting of titanium alloys. Int. J. Adv. Manuf. Technol. 2018, 97, 3009–3021. [Google Scholar] [CrossRef]
- Celaya, A.; Lopez de Lacalle, L.N.; Campa, F.J.; Lamikiz, A. Ultrasonic assisted turning of mild steels. Int. J. Mater. Prod. Technol. 2010, 37, 60–70. [Google Scholar] [CrossRef]
- Brehl, D.E.; Dow, T.A. Review of vibration-assisted machining. Precis. Eng. 2008, 32, 153–172. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Zhang, G.; Ni, C.; Lin, B. Review of ultrasonic vibration-assisted machining in advanced materials. Int. J. Mach. Tools Manuf. 2020, 156, 103594. [Google Scholar] [CrossRef]
- Feng, Y.; Hsu, F.C.; Lu, Y.T.; Lin, Y.F.; Lin, C.T.; Lin, C.F.; Liang, S.Y. Surface roughness prediction in ultrasonic vibration-assisted milling. J. Adv. Mech. Des. Syst. Manuf. 2020, 14, JAMDSM0063. [Google Scholar] [CrossRef]
- Jiang, T.; Yang, J.; Pi, J.; Luo, W.; Zhang, J. Experimental and analytical study of ultrasonic elliptical vibration cutting of micro-pyramid reflective mold based on guided wave transmission. Int. J. Adv. Manuf. Technol. 2022, 118, 237–253. [Google Scholar] [CrossRef]
- Suárez, A.; Veiga, F.; de Lacalle, L.N.L.; Polvorosa, R.; Lutze, S.; Wretland, A. Effects of ultrasonics-assisted face milling on surface integrity and fatigue life of Ni-Alloy 718. J. Mater. Eng. Perform. 2016, 25, 5076–5086. [Google Scholar] [CrossRef]
- Guofu, G.; Ziwen, X.; Zhaojie, Y.; Xiang, D.; Bo, Z. Influence of longitudinal-torsional ultrasonic-assisted vibration on micro-hole drilling, Ti-6Al-4V. Chin. J. Aeronaut. 2021, 34, 247–260. [Google Scholar]
- Zhang, J.; Zhang, J.; Rosenkranz, A.; Suzuki, N.; Shamoto, E. Frictional properties of surface textures fabricated on hardened steel by elliptical vibration diamond cutting. Precis. Eng. 2019, 59, 66–72. [Google Scholar] [CrossRef]
- Zhao, B.; Chang, B.; Wang, X.; Bie, W. System design and experimental research on ultrasonic assisted elliptical vibration grinding of Nano-ZrO2 ceramics. Ceram. Int. 2019, 45, 24865–24877. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Ji, M.; Yin, Y.; Chen, M. On crack suppression mechanisms of ultrasonic elliptical vibration cutting of 3Y-TZP ceramics. Ceram. Int. 2022, 48, 28308–28326. [Google Scholar] [CrossRef]
- Han, L.; Zhang, J.; Chen, J.; Zhang, J.; Liu, H.; Yan, Y.; Sun, T. Influence of vibration parameters on ultrasonic elliptical vibration cutting of reaction-bonded silicon carbide. Int. J. Adv. Manuf. Technol. 2020, 108, 427–437. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, M.; Lin, J.; Du, Y. Elliptic vibration assisted cutting of metal matrix composite reinforced by silicon carbide: An investigation of machining mechanisms and surface integrity. J. Mater. Res. Technol. 2021, 15, 1115–1129. [Google Scholar] [CrossRef]
- Zhang, J.; Suzuki, N.; Wang, Y.; Shamoto, E. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond. J. Mater. Process. Technol. 2014, 214, 2644–2659. [Google Scholar] [CrossRef]
- Nath, C.; Rahman, M.; Neo, K.S. A study on ultrasonic elliptical vibration cutting of tungsten carbide. J. Mater. Process. Technol. 2009, 209, 4459–4464. [Google Scholar] [CrossRef]
- Yin, Z.; Fu, Y.; Xu, J.; Li, H.; Cao, Z.; Chen, Y. A novel single driven ultrasonic elliptical vibration cutting device. Int. J. Adv. Manuf. Technol. 2017, 90, 3289–3300. [Google Scholar] [CrossRef]
- Guo, P.; Ehmann, K.F. Development of a tertiary motion generator for elliptical vibration texturing. Precis. Eng. 2013, 37, 364–371. [Google Scholar] [CrossRef]
- Kurniawan, R.; Ko, T.J.; Ping, L.C.; Kumaran, S.T.; Kiswanto, G.; Guo, P.; Ehmann, K.F. Development of a two-frequency, elliptical-vibration texturing device for surface texturing. J. Mech. Sci. Technol. 2017, 31, 3465–3473. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, S.; Chen, K.; Pan, Y.; Guo, P. Vibration analysis and development of an ultrasonic elliptical vibration tool based on a portal frame structure. Precis. Eng. 2017, 50, 421–432. [Google Scholar] [CrossRef]
- Huang, Z.P.; Pi, J.; Yang, G. Realization of two dimensional high frequency ultrasonic vibration using guided wave transmission. Mech. Sci. Technol. Aerosp. Eng. 2019, 38, 230–236. [Google Scholar]
- Jiang, Y.; Pi, J.; Zhang, Y.; Jiang, T.; Yang, G.; Shen, Z. Research on the tool tip trajectory deflection control and cutting characteristics of elliptical vibration cutting based on guided wave transmission. Int. J. Adv. Manuf. Technol. 2020, 108, 3101–3117. [Google Scholar] [CrossRef]
- Sen, Y.; Yan, B.; Yanan, P.; Zhigang, D.; Zhuji, J.; Renke, K. Development of ultrasonic elliptical vibration cutting device with multi-stage amplification function. J. Mech. Eng. 2022, 58, 260–268. [Google Scholar]
- Yang, J.; Feng, P.; Zhang, J.; Wang, J. Design optimization of ultrasonic vibration cutting tool to generate well-decoupled elliptical trajectory. Int. J. Adv. Manuf. Technol. 2022, 119, 7199–7214. [Google Scholar] [CrossRef]
- Moriwaki, T.; Shamoto, E. Ultrasonic elliptical vibration cutting. CIRP Ann. 1995, 44, 31–34. [Google Scholar] [CrossRef]
- Richardson, A.; Walsh, K.K.; Abdullah, M.M. Closed-form equations for coupling linear structures using stiffness and damping elements. Struct. Control Health Monit. 2013, 20, 259–281. [Google Scholar] [CrossRef]
- Kurniawan, R.; Ali, S.; Park, K.M.; Li, C.P.; Ko, T.J. Development of a three-dimensional ultrasonic elliptical vibration transducer (3D-UEVT) based on sandwiched piezoelectric actuator for micro-grooving. Int. J. Precis. Eng. Manuf. 2019, 20, 1229–1240. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, L. Development of an innovative device for ultrasonic elliptical vibration cutting. Ultrasonics 2015, 60, 76–81. [Google Scholar] [CrossRef] [PubMed]
Component | Material | Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|
End effector, Exponential horn | 7075 | 2810 | 71.7 | 0.33 |
PZT Transducer | PZT8 | 7600 | 66.0 | 0.32 |
End cap, Bolt | S45C | 7800 | 210 | 0.30 |
Parameters | L0 | L1 | L2 | L3 | L4 |
---|---|---|---|---|---|
Length (mm) | 20 | 20 | 6 | 20 | 12 |
Cross section (mm) | 10 | Φ10–Φ30 | Φ20 | Φ20 | Φ8.5–Φ20 |
CC | UEVC | ||
---|---|---|---|
Vibration conditions | Frequency | - | 36.5 KHz |
Phase difference | - | 90° | |
Cutting conditions | Cutting speed | 1–5 m/min | |
Feed rate | 8 μm/r | ||
Cutting depth | 3 μm | ||
Cutting Tool (MCD) | Nose radius | 0.4 mm | |
Clearance angle | 7° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, G.; Xin, W.; Zhang, M.; Lu, J.; Lu, Y.; Zhou, S.; Zheng, K. Developmental and Experimental Study on a Double-Excitation Ultrasonic Elliptical Vibration-Assisted Cutting Device. Machines 2024, 12, 379. https://doi.org/10.3390/machines12060379
Hu G, Xin W, Zhang M, Lu J, Lu Y, Zhou S, Zheng K. Developmental and Experimental Study on a Double-Excitation Ultrasonic Elliptical Vibration-Assisted Cutting Device. Machines. 2024; 12(6):379. https://doi.org/10.3390/machines12060379
Chicago/Turabian StyleHu, Gaofeng, Wendong Xin, Min Zhang, Junti Lu, Yanjie Lu, Shengming Zhou, and Kai Zheng. 2024. "Developmental and Experimental Study on a Double-Excitation Ultrasonic Elliptical Vibration-Assisted Cutting Device" Machines 12, no. 6: 379. https://doi.org/10.3390/machines12060379
APA StyleHu, G., Xin, W., Zhang, M., Lu, J., Lu, Y., Zhou, S., & Zheng, K. (2024). Developmental and Experimental Study on a Double-Excitation Ultrasonic Elliptical Vibration-Assisted Cutting Device. Machines, 12(6), 379. https://doi.org/10.3390/machines12060379