Real-Time Space Trajectory Judgment for Industrial Robots in Welding Tasks
Abstract
:1. Introduction
- (1)
- An automatic algorithm is developed to remove invalid data and align data. The algorithm automatically removes invalid data of different lengths from the axis data, and aligns the axis data of multiple runs. It is used to eliminate the randomness of the robot axis data acquisition.
- (2)
- A set of axis trajectory thresholds is designed by using the absolute positioning precision of the robot. The threshold can be used to judge the real-time health status of each axis of the robot. If the real-time axis trajectory of a robot axis often exceeds the threshold, it indicates that the transmission system of the axis is abnormal.
- (3)
- A method for real-time judgment of robot axis trajectory is proposed. This method can be used to determine the real-time run status of each axis of the robot to monitor the deviation of the robot spatial trajectory in real-time during operation. It is used to ensure the safety of equipment and personnel.
2. Basic Theory
2.1. Determination of Standard Trajectory
2.2. Setting of Trajectory Threshold
2.3. Real-Time Judgment of Trajectory
3. Experimental Validations and Discussion
3.1. Experimental Setup
3.2. Experimental Results and Analysis
4. Conclusions
5. Future and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Wu, C.; Liang, L.; Zhao, B.; Sun, R. Research on Vibration Suppression Methods for Industrial Robot Time-Lag Filtering. Machines 2024, 12, 250. [Google Scholar] [CrossRef]
- Chen, C.; Wang, T.; Liu, C.; Liu, Y.; Cheng, L. Lightweight Convolutional Transformers Enhanced Meta-Learning for Compound Fault Diagnosis of Industrial Robot. IEEE Trans. Instrum. Meas. 2023, 72, 3520612. [Google Scholar] [CrossRef]
- Raksiri, C.; Pa-im, K.; Rodkwan, S. An Analysis of Joint Assembly Geometric Errors Affecting End-Effector for Six-Axis Robots. Robotics 2020, 9, 27. [Google Scholar] [CrossRef]
- Wang, B.; Hu, S.J.; Sun, L.; Freiheit, T. Intelligent Welding System Technologies: State-of-the-Art Review and Perspectives. J. Manuf. Syst. 2020, 56, 373–391. [Google Scholar] [CrossRef]
- Han, G.; Zhang, H.; Wang, G. A Robotic Machining & Forming System for Rapid Spray Metal Tooling. ROBOT 2006, 28, 515–524. [Google Scholar]
- Gatla, C.S.; Lumia, R.; Wood, J.; Starr, G. An Automated Method to Calibrate Industrial Robots Using a Virtual Closed Kinematic Chain. IEEE Trans. Robot. 2007, 23, 1105–1116. [Google Scholar] [CrossRef]
- Zhang, Z. Fault Feature Extraction of Industrial Robot Gearbox Based on Sparse Autoencoder. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2023. [Google Scholar]
- Kim, Y.; Park, J.; Na, K.; Yuan, H.; Youn, B.D.; Kang, C. Phase-Based Time Domain Averaging (PTDA) for Fault Detection of a Gearbox in an Industrial Robot Using Vibration Signals. Mech. Syst. Signal Process. 2020, 138, 106544. [Google Scholar] [CrossRef]
- Batista, J.; Souza, D.; Silva, J.; Ramos, K.; Costa, J.; dos Reis, L.; Braga, A. Trajectory Planning Using Artificial Potential Fields with Metaheuristics. IEEE Lat. Am. Trans. 2020, 18, 914–922. [Google Scholar] [CrossRef]
- Wang, G.; Li, W.; Jiang, C.; Zhu, D.; Li, Z.; Xu, W.; Zhao, H.; Ding, H. Trajectory Planning and Optimization for Robotic Machining Based on Measured Point Cloud. IEEE Trans. Robot. 2022, 38, 1621–1637. [Google Scholar] [CrossRef]
- Hao, F.; Xu, L.; Ju, J. Research on Curve Trajectory Planning Method for Articulated Robot. Mod. Mach. 2023, 1–6. [Google Scholar] [CrossRef]
- Seker, M.Y.; Tekden, A.E.; Ugur, E. Deep Effect Trajectory Prediction in Robot Manipulation. Robot. Auton. Syst. 2019, 119, 173–184. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, L.; Liu, C.; Tomizuka, M. Towards Efficient Human-Robot Collaboration with Robust Plan Recognition and Trajectory Prediction. IEEE Robot. Autom. Lett. 2020, 5, 2602–2609. [Google Scholar] [CrossRef]
- Li, D.; Yang, H.; Deng, H.; Huang, J. Adaptive Trajectory Tracking Controller for Snake Robot Tracking Error Prediction. Chin. J. Sci. Instrum. 2021, 42, 267–278. [Google Scholar]
- Gonzalez, M.K.; Theissen, N.A.; Barrios, A.; Archenti, A. Online Compliance Error Compensation System for Industrial Manipulators in Contact Applications. Robot. Comput.-Integr. Manuf. 2022, 76, 102305. [Google Scholar] [CrossRef]
- Li, R.; Ding, N.; Zhao, Y.; Liu, H. Real-Time Trajectory Position Error Compensation Technology of Industrial Robot. Measurement 2023, 208, 112418. [Google Scholar] [CrossRef]
- Zhao, N.; Murakami, K.; Yamakawa, Y. Vision Based Trajectory Dynamic Compensation System of Industrial Robot. Int. J. Adv. Manuf. Technol. 2024, 131, 6013–6026. [Google Scholar] [CrossRef]
- Song, F.; Chen, S. Fundamentals of Statistics; Modern Education Press: Beijing, China, 2011. [Google Scholar]
The Range of Correlation Coefficient | Correlation |
---|---|
Significant correlation | |
High correlation | |
Moderate correlation | |
Low correlation | |
Weak correlation |
Parameter Name | Value |
---|---|
Load | 10 kg |
Wingspan | 1420 mm |
Number of axes | 6 |
Repeat positioning precision | ±0.04 mm |
Position absolute precision (ISO9283) | ±0.5 mm |
Circular orbit repeatability (ISO9283) | ±0.2 mm |
Axes | A1 | A2 | A3 | A4 | A5 | A6 | Total |
---|---|---|---|---|---|---|---|
1 | 1.087 1 | 0.038 | 0.800 | 0.060 | 0.019 | 0.018 | 3.010 |
2 | 0.091 | 0.025 | 0.191 | 0.037 | 0.017 | 0.017 | 3.479 |
3 | 0.758 | 0.044 | 0.166 | 0.023 | 0.018 | 0.018 | 3.284 |
4 | 0.092 | 0.033 | 0.752 | 0.031 | 0.018 | 0.019 | 3.540 |
5 | 2.563 | 0.244 | 0.077 | 0.020 | 0.019 | 0.017 | 2.692 |
6 | 0.094 | 0.042 | 0.025 | 0.018 | 0.016 | 0.016 | 3.132 |
Average | 0.781 | 0.071 | 0.335 | 0.036 | 0.018 | 0.018 | 3.190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Tian, R.; Lei, Y.; Gao, H.; Fang, Y. Real-Time Space Trajectory Judgment for Industrial Robots in Welding Tasks. Machines 2024, 12, 360. https://doi.org/10.3390/machines12060360
Wu X, Tian R, Lei Y, Gao H, Fang Y. Real-Time Space Trajectory Judgment for Industrial Robots in Welding Tasks. Machines. 2024; 12(6):360. https://doi.org/10.3390/machines12060360
Chicago/Turabian StyleWu, Xiangyang, Renyong Tian, Yuncong Lei, Hongli Gao, and Yanjiang Fang. 2024. "Real-Time Space Trajectory Judgment for Industrial Robots in Welding Tasks" Machines 12, no. 6: 360. https://doi.org/10.3390/machines12060360
APA StyleWu, X., Tian, R., Lei, Y., Gao, H., & Fang, Y. (2024). Real-Time Space Trajectory Judgment for Industrial Robots in Welding Tasks. Machines, 12(6), 360. https://doi.org/10.3390/machines12060360