An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot
Abstract
:1. Introduction
2. System Structure
2.1. Overall Structure of Interactive Control Systems
2.2. Mechanical Structure of Rehabilitation Robot
3. Control Method
3.1. Motion Data Analysis Based on a 2D Image
- Δt—time interval, the interval between two image analyses;
- x1, y1, z1—the coordinates of the wrist in the first image;
- x2, y2, z2—the coordinates of the wrist in the second image.
- —the normalised distance between the sample point and the fit point in the X direction;
- —the distance between the furthest sample point and the fit point in the X direction;
- —cubic weight function.
- xi, yi—coordinates of the fitting point;
- β—the best regression coefficient;
- v(xi)—the weight of the fit point.
3.2. Human–Computer Interactive Control
- KP—proportional gain;
- Ki—integral gain;
- Kd—differential gain;
- e(t)—error signal.
4. Rehabilitation Training Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Li, X.; Zhu, A.; Zheng, Z.; Zhu, H. Design and evaluation of a surface electromyography-controlled lightweight upper arm exoskeleton rehabilitation robot. Int. J. Adv. Robot. Syst. 2021, 18, 17298814211003461. [Google Scholar] [CrossRef]
- Chen, C.; Lien, W.; Chen, C.; Wu, Y. Implementation of an upper-limb exoskeleton robot driven by pneumatic muscle actuators for rehabilitation. Actuators 2020, 9, 106. [Google Scholar] [CrossRef]
- Zimmermann, Y.; Sommerhalder, M.; Wolf, P.; Riener, R.; Hutter, M. ANYexo 2.0: A fully actuated upper-limb exoskeleton for manipulation and joint-oriented training in all stages of rehabilitation. In IEEE Transactions on Robotics; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Jin, X.; Jun, D.; Jin, X.; Seon, J.; Pott, A.; Park, S.; Park, J.; Ko, S.Y. Upper limb rehabilitation using a planar cable-driven parallel robot with various rehabilitation strategies. In Cable-Driven Parallel Robots, Proceedings of the Second International Conference on Cable-Driven Parallel Robots, Duisburg, Germany, 24–27 August 2014; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 307–321. [Google Scholar]
- Zhang, W. Desktop Upper Limbs Rehabilitation Robot Control System Research. Ph.D. Thesis, Changzhou University, Changzhou, China, 2023. [Google Scholar]
- Garzo, A.; Jung, J.H.; Arcas-Ruiz-Ruano, J.; Perry, J.C.; Keller, T. ArmAssist: A telerehabilitation solution for upper-limb rehabilitation at home. IEEE Robot. Autom. Mag. 2022, 30, 62–71. [Google Scholar] [CrossRef]
- Meng, W.; Zhu, Y.; Zhou, Z.; Chen, K.; Ai, Q. Active interaction control of a rehabilitation robot based on motion recognition and adaptive impedance control. In Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014; IEEE: New York, NY, USA, 2014; pp. 1436–1441. [Google Scholar]
- Guo, B.; Han, J.; Li, X.; Yan, L. Human–robot interactive control based on reinforcement learning for gait rehabilitation training robot. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839584. [Google Scholar]
- Guang, H.; Ji, L.; Shi, Y.; Misgeld, B. Dynamic modeling and interactive performance of PARM: A parallel upper-limb rehabilitation robot using impedance control for patients after stroke. J. Healthc. Eng. 2018, 2018, 8647591. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Tay, E.H. An Interactive Training System for Upper Limb Rehabilitation Using Visual and Auditory Feedback. In Proceedings of the 5th International Conference on Robotics and Artificial Intelligence, Singapore, 22–24 November 2019; pp. 54–58. [Google Scholar]
- Pan, L.; Zhao, L.; Song, A.; Yin, Z.; She, S. A novel robot-aided upper limb rehabilitation training system based on multimodal feedback. Front. Robot. AI 2019, 6, 102. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.S.; Hong, N.; Cho, M.; Lee, C.; Seo, H.G.; Kim, S. Vision-Assisted Interactive Human-in-the-Loop Distal Upper Limb Rehabilitation Robot and its Clinical Usability Test. Appl. Sci. 2019, 9, 3106. [Google Scholar] [CrossRef]
- Bang, M.S.; Kim, S.; Nam, H.S.; Kim, Y.J.; Oh, B.M.; Beom, J.; Seo, H.G.; Leigh, J.H.; Koh, S.; Park, S.W. Upper Limb Rehabilitation Robot Module and Upper Limb Rehabilitation System for Precision Control by Image Processing. Korean Patent 1018316020000, 19 February 2018. [Google Scholar]
- Tao, G.; Chen, L.; Ye, C.; Peng, J. Design of a Desktop Upper Limb Rehabilitation Robot. In Proceedings of the 2023 IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China, 6–9 August 2023; IEEE: New York, NY, USA, 2023; pp. 911–916. [Google Scholar]
- Ye, C.; Tong, Z.; Yu, S.; Jiang, C. Kinematic analysis of an omnidirectional mobile assembly robot. Robot 2016, 38, 550–556. [Google Scholar]
- Ma, S.; Ren, C.; Ye, C. An omnidirectional mobile robot: Concept and analysis. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; IEEE: New York, NY, USA, 2012; pp. 920–925. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, N.; Che Daud, A.Z.; Ahmad Roslan, N.F.; Mansor, W. Mirror therapy rehabilitation in stroke: A scoping review of upper limb recovery and brain activities. Rehabil. Res. Pract. 2021, 2021, 9487319. [Google Scholar] [CrossRef] [PubMed]
- Miryutova, N.; Samoylova, I.; Minchenko, N.; Tsekhmeystruk, E. Therapeutic effects of mirror therapy in patients after stroke. Vopr. Kurortol. Fizioter. I Lech. Fiz. Kult. 2021, 98, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.D.; Zakaria, N.A.C.; Hashim, N.; Mohamaddan, S. Exoskeleton Robotics Intervention as an Adjunctive Treatment in Enhancing Post-Stroke Upper Limb Neurorecovery. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12–15 October 2021; IEEE: New York, NY, USA, 2021; pp. 1391–1396. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|
shoulder | 88.8% | 89.4% | 86.7% | 89.7% | 87.6% | 86.6% | 85.9% | 90.5% | 85.0% | 89.3% | 87.95% |
elbow | 89.5% | 87.1% | 91.5% | 87.6% | 86.8% | 86.3% | 85.8% | 89.4% | 87.5% | 85.5% | 87.70% |
push-pull | 85.6% | 88.8% | 88.2% | 87.4% | 88.7% | 88.0% | 88.1% | 89.5% | 88.5% | 89.0% | 88.18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Wang, Z.; Yu, S.; Jiang, C. An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot. Machines 2024, 12, 348. https://doi.org/10.3390/machines12050348
Ye C, Wang Z, Yu S, Jiang C. An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot. Machines. 2024; 12(5):348. https://doi.org/10.3390/machines12050348
Chicago/Turabian StyleYe, Changlong, Zun Wang, Suyang Yu, and Chunying Jiang. 2024. "An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot" Machines 12, no. 5: 348. https://doi.org/10.3390/machines12050348
APA StyleYe, C., Wang, Z., Yu, S., & Jiang, C. (2024). An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot. Machines, 12(5), 348. https://doi.org/10.3390/machines12050348