An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot
Abstract
1. Introduction
2. System Structure
2.1. Overall Structure of Interactive Control Systems
2.2. Mechanical Structure of Rehabilitation Robot
3. Control Method
3.1. Motion Data Analysis Based on a 2D Image
- Δt—time interval, the interval between two image analyses;
- x1, y1, z1—the coordinates of the wrist in the first image;
- x2, y2, z2—the coordinates of the wrist in the second image.
- —the normalised distance between the sample point and the fit point in the X direction;
- —the distance between the furthest sample point and the fit point in the X direction;
- —cubic weight function.
- xi, yi—coordinates of the fitting point;
- β—the best regression coefficient;
- v(xi)—the weight of the fit point.
3.2. Human–Computer Interactive Control
- KP—proportional gain;
- Ki—integral gain;
- Kd—differential gain;
- e(t)—error signal.
4. Rehabilitation Training Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Li, X.; Zhu, A.; Zheng, Z.; Zhu, H. Design and evaluation of a surface electromyography-controlled lightweight upper arm exoskeleton rehabilitation robot. Int. J. Adv. Robot. Syst. 2021, 18, 17298814211003461. [Google Scholar] [CrossRef]
- Chen, C.; Lien, W.; Chen, C.; Wu, Y. Implementation of an upper-limb exoskeleton robot driven by pneumatic muscle actuators for rehabilitation. Actuators 2020, 9, 106. [Google Scholar] [CrossRef]
- Zimmermann, Y.; Sommerhalder, M.; Wolf, P.; Riener, R.; Hutter, M. ANYexo 2.0: A fully actuated upper-limb exoskeleton for manipulation and joint-oriented training in all stages of rehabilitation. In IEEE Transactions on Robotics; IEEE: New York, NY, USA, 2023. [Google Scholar]
- Jin, X.; Jun, D.; Jin, X.; Seon, J.; Pott, A.; Park, S.; Park, J.; Ko, S.Y. Upper limb rehabilitation using a planar cable-driven parallel robot with various rehabilitation strategies. In Cable-Driven Parallel Robots, Proceedings of the Second International Conference on Cable-Driven Parallel Robots, Duisburg, Germany, 24–27 August 2014; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 307–321. [Google Scholar]
- Zhang, W. Desktop Upper Limbs Rehabilitation Robot Control System Research. Ph.D. Thesis, Changzhou University, Changzhou, China, 2023. [Google Scholar]
- Garzo, A.; Jung, J.H.; Arcas-Ruiz-Ruano, J.; Perry, J.C.; Keller, T. ArmAssist: A telerehabilitation solution for upper-limb rehabilitation at home. IEEE Robot. Autom. Mag. 2022, 30, 62–71. [Google Scholar] [CrossRef]
- Meng, W.; Zhu, Y.; Zhou, Z.; Chen, K.; Ai, Q. Active interaction control of a rehabilitation robot based on motion recognition and adaptive impedance control. In Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014; IEEE: New York, NY, USA, 2014; pp. 1436–1441. [Google Scholar]
- Guo, B.; Han, J.; Li, X.; Yan, L. Human–robot interactive control based on reinforcement learning for gait rehabilitation training robot. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839584. [Google Scholar]
- Guang, H.; Ji, L.; Shi, Y.; Misgeld, B. Dynamic modeling and interactive performance of PARM: A parallel upper-limb rehabilitation robot using impedance control for patients after stroke. J. Healthc. Eng. 2018, 2018, 8647591. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Tay, E.H. An Interactive Training System for Upper Limb Rehabilitation Using Visual and Auditory Feedback. In Proceedings of the 5th International Conference on Robotics and Artificial Intelligence, Singapore, 22–24 November 2019; pp. 54–58. [Google Scholar]
- Pan, L.; Zhao, L.; Song, A.; Yin, Z.; She, S. A novel robot-aided upper limb rehabilitation training system based on multimodal feedback. Front. Robot. AI 2019, 6, 102. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.S.; Hong, N.; Cho, M.; Lee, C.; Seo, H.G.; Kim, S. Vision-Assisted Interactive Human-in-the-Loop Distal Upper Limb Rehabilitation Robot and its Clinical Usability Test. Appl. Sci. 2019, 9, 3106. [Google Scholar] [CrossRef]
- Bang, M.S.; Kim, S.; Nam, H.S.; Kim, Y.J.; Oh, B.M.; Beom, J.; Seo, H.G.; Leigh, J.H.; Koh, S.; Park, S.W. Upper Limb Rehabilitation Robot Module and Upper Limb Rehabilitation System for Precision Control by Image Processing. Korean Patent 1018316020000, 19 February 2018. [Google Scholar]
- Tao, G.; Chen, L.; Ye, C.; Peng, J. Design of a Desktop Upper Limb Rehabilitation Robot. In Proceedings of the 2023 IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China, 6–9 August 2023; IEEE: New York, NY, USA, 2023; pp. 911–916. [Google Scholar]
- Ye, C.; Tong, Z.; Yu, S.; Jiang, C. Kinematic analysis of an omnidirectional mobile assembly robot. Robot 2016, 38, 550–556. [Google Scholar]
- Ma, S.; Ren, C.; Ye, C. An omnidirectional mobile robot: Concept and analysis. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, 11–14 December 2012; IEEE: New York, NY, USA, 2012; pp. 920–925. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, N.; Che Daud, A.Z.; Ahmad Roslan, N.F.; Mansor, W. Mirror therapy rehabilitation in stroke: A scoping review of upper limb recovery and brain activities. Rehabil. Res. Pract. 2021, 2021, 9487319. [Google Scholar] [CrossRef] [PubMed]
- Miryutova, N.; Samoylova, I.; Minchenko, N.; Tsekhmeystruk, E. Therapeutic effects of mirror therapy in patients after stroke. Vopr. Kurortol. Fizioter. I Lech. Fiz. Kult. 2021, 98, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.D.; Zakaria, N.A.C.; Hashim, N.; Mohamaddan, S. Exoskeleton Robotics Intervention as an Adjunctive Treatment in Enhancing Post-Stroke Upper Limb Neurorecovery. In Proceedings of the 2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12–15 October 2021; IEEE: New York, NY, USA, 2021; pp. 1391–1396. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Average | |
---|---|---|---|---|---|---|---|---|---|---|---|
shoulder | 88.8% | 89.4% | 86.7% | 89.7% | 87.6% | 86.6% | 85.9% | 90.5% | 85.0% | 89.3% | 87.95% |
elbow | 89.5% | 87.1% | 91.5% | 87.6% | 86.8% | 86.3% | 85.8% | 89.4% | 87.5% | 85.5% | 87.70% |
push-pull | 85.6% | 88.8% | 88.2% | 87.4% | 88.7% | 88.0% | 88.1% | 89.5% | 88.5% | 89.0% | 88.18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Wang, Z.; Yu, S.; Jiang, C. An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot. Machines 2024, 12, 348. https://doi.org/10.3390/machines12050348
Ye C, Wang Z, Yu S, Jiang C. An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot. Machines. 2024; 12(5):348. https://doi.org/10.3390/machines12050348
Chicago/Turabian StyleYe, Changlong, Zun Wang, Suyang Yu, and Chunying Jiang. 2024. "An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot" Machines 12, no. 5: 348. https://doi.org/10.3390/machines12050348
APA StyleYe, C., Wang, Z., Yu, S., & Jiang, C. (2024). An Image-Based Interactive Training Method of an Upper Limb Rehabilitation Robot. Machines, 12(5), 348. https://doi.org/10.3390/machines12050348