Heterogeneous Multi-Robot Collaboration for Coverage Path Planning in Partially Known Dynamic Environments
Abstract
:1. Introduction
1.1. Main Contributions
- Introducing a cooperation strategy for a group of heterogeneous robots operating in dynamic environments with partial knowledge of the area and with potential dynamic obstacles;
- Proposing an effective CPP strategy considering the minimization of travel distance, reducing mission time, and considering constraints like flying time of UAVs;
- Assessing the proposed approach by performing tests in a realistic simulation environment as a proof of concept.
1.2. Organization
2. Related Works
2.1. Cooperative Heterogeneous Robots
2.2. Coverage Path Planning
3. Proposed Methodology
3.1. Problem Description
- The obstacles space of states.
- The desired area for UAVs to cover.
- The desired area for UGVs to cover.
- The UAV1 space of states.
- The UAV2 space of states.
- The UGV space of states.
- are the respective agent’s pose.
- is the sensors readings vector.
- is the agent’s battery percentage status where .
3.2. Ground Inspection
3.3. Aerial Inspection
3.4. Coverage Path Planning Algorithm
- : Cost function;
- : Manhattan distance from the cell to the goal;
- N: Number of objects;
- : Discount factor;
- : Obstacle distance.
3.5. Deep Q-Network
4. Results and Discussion
4.1. Hardware Description
4.2. Simulations
4.2.1. System Intregration
4.2.2. Mapping
4.3. Coverage Path Planning
Tuning Wavefront Algorithm
4.4. ROS Implementation
4.4.1. Battery Scarcity
4.4.2. Avoiding Unmapped Objects
4.4.3. Communication Loss
4.4.4. Time Analysis
4.4.5. Testing Other CPP into the Architecture
4.5. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGVs | Automated Guided Vehicles |
AUVs | Autonomous Underwater Vehicles |
CNNs | Convolutional Neural Networks |
CPP | Coverage Path Planning |
DNN | Deep Neural Network |
DRL | Deep Reinforcement Learning |
DQN | Deep Q-Network |
MRTA | Multi-Robot Task Allocation |
NN | Neural Networks |
Octomap | OctoMap Mapping Framework |
RRT | Rapidly Exploring Random Trees |
RTAB | Real-Time Appearance-Based Mapping |
SITL | Software-In-The-Loop |
UAVs | Unmanned Aerial Vehicles |
UGVs | Unmanned Ground Vehicles |
USVs | Unmanned Surface Vehicles |
References
- Sinnemann, J.; Boshoff, M.; Dyrska, R.; Leonow, S.; Mönnigmann, M.; Kuhlenkötter, B. Systematic literature review of applications and usage potentials for the combination of unmanned aerial vehicles and mobile robot manipulators in production systems. Prod. Eng. 2022, 16, 579–596. [Google Scholar] [CrossRef]
- Berger, G.S.; Teixeira, M.; Cantieri, A.; Lima, J.; Pereira, A.I.; Valente, A.; Castro, G.G.d.; Pinto, M.F. Cooperative Heterogeneous Robots for Autonomous Insects Trap Monitoring System in a Precision Agriculture Scenario. Agriculture 2023, 13, 239. [Google Scholar] [CrossRef]
- Narváez, E.; Ravankar, A.A.; Ravankar, A.; Emaru, T.; Kobayashi, Y. Autonomous vtol-uav docking system for heterogeneous multirobot team. IEEE Trans. Instrum. Meas. 2020, 70, 1–18. [Google Scholar] [CrossRef]
- Almadhoun, R.; Taha, T.; Seneviratne, L.; Zweiri, Y. A survey on multi-robot coverage path planning for model reconstruction and mapping. SN Appl. Sci. 2019, 1, 847. [Google Scholar] [CrossRef]
- Madridano, Á.; Al-Kaff, A.; Flores, P.; Martín, D.; de la Escalera, A. Software architecture for autonomous and coordinated navigation of uav swarms in forest and urban firefighting. Appl. Sci. 2021, 11, 1258. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, N.; Zheng, J.; Zhang, Y.; Yi, S.; Luo, W.; Sycara, K. Adaptive informative sampling with environment partitioning for heterogeneous multi-robot systems. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; IEEE: New York, NY, USA, 2020; pp. 11718–11723. [Google Scholar]
- Pinto, M.F.; Melo, A.G.; Marcato, A.L.; Urdiales, C. Case-based reasoning approach applied to surveillance system using an autonomous unmanned aerial vehicle. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; IEEE: New York, NY, USA, 2017; pp. 1324–1329. [Google Scholar]
- Andrade, F.A.A.; Hovenburg, A.; de Lima, L.N.; Rodin, C.D.; Johansen, T.A.; Storvold, R.; Correia, C.A.M.; Haddad, D.B. Autonomous Unmanned Aerial Vehicles in Search and Rescue Missions Using Real-Time Cooperative Model Predictive Control. Sensors 2019, 19, 4067. [Google Scholar] [CrossRef] [PubMed]
- Biundini, I.Z.; Melo, A.G.; Coelho, F.O.; Honório, L.M.; Marcato, A.L.; Pinto, M.F. Experimentation and simulation with autonomous coverage path planning for uavs. J. Intell. Robot. Syst. 2022, 105, 46. [Google Scholar] [CrossRef]
- Luque Vega, L.F.; Lopez-Neri, E.; Arellano-Muro, C.A.; Gonzalez Jimenez, L.E.; Ghommam, J.; Carrasco Navarro, R. UAV Flight Instructional Design for Industry 4.0 based on the Framework of Educational Mechatronics. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 2313–2318. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Wang, K.; Lou, A. Unmanned Aerial Vehicle (UAV) Remote Sensing in Grassland Ecosystem Monitoring: A Systematic Review. Remote Sens. 2022, 14, 1096. [Google Scholar] [CrossRef]
- Castro, G.G.D.; Berger, G.S.; Cantieri, A.; Teixeira, M.; Lima, J.; Pereira, A.I.; Pinto, M.F. Adaptive Path Planning for Fusing Rapidly Exploring Random Trees and Deep Reinforcement Learning in an Agriculture Dynamic Environment UAVs. Agriculture 2023, 13, 354. [Google Scholar] [CrossRef]
- de Castro, G.G.; Pinto, M.F.; Biundini, I.Z.; Melo, A.G.; Marcato, A.L.; Haddad, D.B. Dynamic Path Planning Based on Neural Networks for Aerial Inspection. J. Control. Autom. Electr. Syst. 2023, 34, 85–105. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Stek, T.D. Drones over Mediterranean landscapes. The potential of small UAV’s (drones) for site detection and heritage management in archaeological survey projects: A case study from Le Pianelle in the Tappino Valley, Molise (Italy). J. Cult. Herit. 2016, 22, 1066–1071. [Google Scholar] [CrossRef]
- Ali, H.; Xiong, G.; Haider, M.H.; Tamir, T.S.; Dong, X.; Shen, Z. Feature selection-based decision model for UAV path planning on rough terrains. Expert Syst. Appl. 2023, 232, 120713. [Google Scholar] [CrossRef]
- Poudel, S.; Arafat, M.Y.; Moh, S. Bio-Inspired Optimization-Based Path Planning Algorithms in Unmanned Aerial Vehicles: A Survey. Sensors 2023, 23, 3051. [Google Scholar] [CrossRef]
- Kamil, F.; Tang, S.; Khaksar, W.; Zulkifli, N.; Ahmad, S. A review on motion planning and obstacle avoidance approaches in dynamic environments. Adv. Robot. Autom. 2015, 4, 134–142. [Google Scholar]
- Garcia, M.P.; Montiel, O.; Castillo, O.; Sepulveda, R.; Melin, P. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation. Appl. Soft Comput. 2009, 9, 1102–1110. [Google Scholar] [CrossRef]
- Orozco-Rosas, U.; Picos, K.; Montiel, O. Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots. IEEE Access 2019, 7, 156787–156803. [Google Scholar] [CrossRef]
- Bai, X.; Yan, W.; Cao, M. Clustering-based algorithms for multivehicle task assignment in a time-invariant drift field. IEEE Robot. Autom. Lett. 2017, 2, 2166–2173. [Google Scholar] [CrossRef]
- Bai, X.; Yan, W.; Ge, S.S.; Cao, M. An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field. Inf. Sci. 2018, 453, 227–238. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput. Commun. 2020, 149, 270–299. [Google Scholar] [CrossRef]
- Sung, I.; Choi, B.; Nielsen, P. On the training of a neural network for online path planning with offline path planning algorithms. Int. J. Inf. Manag. 2021, 57, 102142. [Google Scholar] [CrossRef]
- Miao, H.; Tian, Y.C. Dynamic robot path planning using an enhanced simulated annealing approach. Appl. Math. Comput. 2013, 222, 420–437. [Google Scholar] [CrossRef]
- Zhang, B.; Li, G.; Zheng, Q.; Bai, X.; Ding, Y.; Khan, A. Path planning for wheeled mobile robot in partially known uneven terrain. Sensors 2022, 22, 5217. [Google Scholar] [CrossRef]
- Guetta, Y.; Shapiro, A. On-Board Physical Battery Replacement System and Procedure for Drones During Flight. IEEE Robot. Autom. Lett. 2022, 7, 9755–9762. [Google Scholar] [CrossRef]
- Lee, D.; Zhou, J.; Lin, W.T. Autonomous battery swapping system for quadcopter. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; IEEE: New York, NY, USA, 2015; pp. 118–124. [Google Scholar]
- Kang, H.; Joung, J.; Kang, J. Power-efficient formation of UAV swarm: Just like flying birds? In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Virtual Event, Taiwan, 7–11 December 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Cheraghi, A.R.; Shahzad, S.; Graffi, K. Past, present, and future of swarm robotics. In Proceedings of the Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 3, Amsterdam, The Netherlands, 1–2 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 190–233. [Google Scholar]
- Chen, M.; Chen, Y.; Chen, Z.; Yang, Y. Path planning of UAV-UGV heterogeneous robot system in road network. In Proceedings of the Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019, Shenyang, China, 8–11 August 2019; Proceedings, Part VI 12. Springer: Berlin/Heidelberg, Germany, 2019; pp. 497–507. [Google Scholar]
- Kim, P.; Price, L.C.; Park, J.; Cho, Y.K. UAV-UGV cooperative 3D environmental mapping. In Proceedings of the ASCE International Conference on Computing in Civil Engineering, Atlanta, GA, USA, 17–19 June 2019. [Google Scholar]
- Arbanas, B.; Ivanovic, A.; Car, M.; Haus, T.; Orsag, M.; Petrovic, T.; Bogdan, S. Aerial-ground robotic system for autonomous delivery tasks. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: New York, NY, USA, 2016; pp. 5463–5468. [Google Scholar]
- Stentz, A.; Kelly, A.; Rander, P.; Herman, H.; Amidi, O.; Mandelbaum, R.; Salgian, G.; Pedersen, J. Real-Time, Multi-Perspective Perception for Unmanned Ground Vehicles. In Proceedings of the Unmanned Systems Symposium (AUVSI ’03), Baltimore, MD, USA, 15–17 July 2003. [Google Scholar]
- Zhao, D.; Yang, C.; Zhang, T.; Yang, J.; Hiroshi, Y. A Task Allocation Approach of Multi-Heterogeneous Robot System for Elderly Care. Machines 2022, 10, 622. [Google Scholar] [CrossRef]
- Quenzel, J.; Splietker, M.; Pavlichenko, D.; Schleich, D.; Lenz, C.; Schwarz, M.; Schreiber, M.; Beul, M.; Behnke, S. Autonomous fire fighting with a UAV-UGV team at MBZIRC 2020. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; IEEE: New York, NY, USA, 2021; pp. 934–941. [Google Scholar]
- Langerwisch, M.; Wittmann, T.; Thamke, S.; Remmersmann, T.; Tiderko, A.; Wagner, B. Heterogeneous teams of unmanned ground and aerial robots for reconnaissance and surveillance-a field experiment. In Proceedings of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Linköping, Sweden, 21–26 October 2013; IEEE: New York, NY, USA, 2013; pp. 1–6. [Google Scholar]
- Michael, N.; Fink, J.; Kumar, V. Controlling a team of ground robots via an aerial robot. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; IEEE: New York, NY, USA, 2007; pp. 965–970. [Google Scholar]
- Chakraa, H.; Guérin, F.; Leclercq, E.; Lefebvre, D. Optimization techniques for Multi-Robot Task Allocation problems: Review on the state-of-the-art. Robot. Auton. Syst. 2023, 168, 104492. [Google Scholar] [CrossRef]
- Song, Y.S.; Arshad, M.R. Coverage path planning for underwater pole inspection using an autonomous underwater vehicle. In Proceedings of the 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 22 October 2016; pp. 230–235. [Google Scholar] [CrossRef]
- Kim, D.H.; Hoang, G.; Bae, M.; Kim, J.W.; Yoon, S.M.; Yeo, T.; Sup, H.; Kim, S. Path tracking control coverage of a mining robot based on exhaustive path planning with exact cell decomposition. In Proceedings of the 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), Kintex, Republic of Korea, 22–25 October 2014; pp. 730–735. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Biundini, I.Z.; Melo, A.G.; Pinto, M.F.; Marins, G.M.; Marcato, A.L.; Honorio, L.M. Coverage path planning optimization for slopes and dams inspection. In Iberian Robotics Conference; Springer: Berlin/Heidelberg, Germany, 2019; pp. 513–523. [Google Scholar]
- Wang, S.; Bai, Y.; Zhou, C. Coverage path planning design of mapping UAVs based on particle swarm optimization algorithm. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; IEEE: New York, NY, USA, 2019; pp. 8236–8241. [Google Scholar]
- Tan, C.S.; Mohd-Mokhtar, R.; Arshad, M.R. A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms. IEEE Access 2021, 9, 119310–119342. [Google Scholar] [CrossRef]
- Qureshi, A.H.; Simeonov, A.; Bency, M.J.; Yip, M.C. Motion planning networks. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 20–24 May 2019; IEEE: New York, NY, USA, 2019; pp. 2118–2124. [Google Scholar]
- Wu, K.; Esfahani, M.A.; Yuan, S.; Wang, H. TDPP-Net: Achieving three-dimensional path planning via a deep neural network architecture. Neurocomputing 2019, 357, 151–162. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y. UAV Path Planning Based on Multi-Layer Reinforcement Learning Technique. IEEE Access 2021, 9, 59486–59497. [Google Scholar] [CrossRef]
- Zelinsky, A.; Jarvis, R.A.; Byrne, J.; Yuta, S. Planning paths of complete coverage of an unstructured environment by a mobile robot. In Proceedings of the International Conference on Advanced Robotics, Atlanta, GA, USA, 2–6 May 1993; Volume 13, pp. 533–538. [Google Scholar]
- Jarvis, R.; Byrne, J.; Ajay, K. An Intelligent Autonomous Guided Vehicle: Localisation, Environmental Modelling and Collision-Free Path Finding. In Proceedings of the 19th International Symposium and Exposition on Robots, Sydney, Australia, 6–10 November 1988; pp. 767–792. [Google Scholar]
- Yang, Y.; Juntao, L.; Lingling, P. Multi-robot path planning based on a deep reinforcement learning DQN algorithm. CAAI Trans. Intell. Technol. 2020, 5, 177–183. [Google Scholar] [CrossRef]
- Open Source Autopilot of Drone Developers. Available online: https://px4.io/ (accessed on 21 January 2024).
- Ramos, G.S.; Pinto, M.F.; Coelho, F.O.; Honório, L.M.; Haddad, D.B. Hybrid methodology based on computational vision and sensor fusion for assisting autonomous UAV on offshore messenger cable transfer operation. Robotica 2022, 40, 2786–2814. [Google Scholar] [CrossRef]
- MAVLink Developer Guide. Available online: http://mavlink.io (accessed on 21 January 2024).
- Santos, T.M.; Favoreto, D.G.; Carneiro, M.M.d.O.; Pinto, M.F.; Zachi, A.R.; Gouvea, J.A.; Manhães, A.; Almeida, L.F.; Silva, G.R. Introducing Robotic Operating System as a Project-Based Learning in an Undergraduate Research Project. In Proceedings of the 2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE), Salvador, Brazil, 9–11 October 2023; IEEE: New York, NY, USA, 2023; pp. 585–590. [Google Scholar]
- Labbé, M.; Michaud, F. RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 2019, 36, 416–446. [Google Scholar] [CrossRef]
- Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Auton. Robot. 2013, 34, 189–206. [Google Scholar] [CrossRef]
Work | Year | Cooperation/Robot | Characteristics |
---|---|---|---|
Stentz et al. [34] | 2003 | UAV and UGV | UAV detects obstacles for the UGV |
Langerwisch et al. [37] | 2013 | 6 UAVs and UGVs | Real application for reconnaissance and surveillance without constant human observation |
Kim et al. [32] | 2019 | UAVs | Optimal path strategy for navigating 3D terrain maps |
Qureshi et al. [47] | 2019 | 7 DOF Robot Manipulator | Neural network for motion planning |
Wu et al. [48] | 2019 | UAV | Path planning using CNNs for dynamic environments |
Kang et al. [29] | 2020 | UAVs formation | Maximization of local objectives based on individual robot behavior |
Madridano et al. [5] | 2021 | Homogeneous robots | Coordination of robots that share similar functionalities |
Quenzel et al. [36] | 2021 | Team of UAVs and UGV | UAVs cooperating with a UGV for autonomous fire fighting |
Cui et al. [49] | 2021 | UAV | Reinforcement learning for UAV path planning |
Zhao et al. [35] | 2022 | Nursing robots | Multi-robot taks allocation for elderly care |
Berger et al. [2] | 2023 | One UAV and one UGV | Architecture for UAV and UGV cooperation in agriculture |
Proposed Work | 2024 | Two UAVs and one UGV | Efficient cooperation between two UAVs and one UGV in dynamic environments without interrupting the inspection process |
Layer Type | Input | Hidden | Output |
---|---|---|---|
Number of neurons | 12 | 30 | 6 |
Scenario | Mean Time Cost (min) | Mean Path Deviation (m) | Success Rate |
---|---|---|---|
Battery scarcity | 28 | 2 | 98% |
unmapped objects | 29 | 10 (for two unmapped objects) | 96% |
Communication loss | Varies depending on communications return | 1 | 100% |
Algorithm | Time (s) | Overlap (% of Path) | Covered Area (%) |
---|---|---|---|
Wavefront | 5.4 | 20 | 100 |
Dijkstra | 2470.25 | 10 | 100 |
A* | 1250.71 | 5 | 87 |
Boustrophedon | 4.3 | 24 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro, G.G.R.; Santos, T.M.B.; Andrade, F.A.A.; Lima, J.; Haddad, D.B.; Honório, L.d.M.; Pinto, M.F. Heterogeneous Multi-Robot Collaboration for Coverage Path Planning in Partially Known Dynamic Environments. Machines 2024, 12, 200. https://doi.org/10.3390/machines12030200
de Castro GGR, Santos TMB, Andrade FAA, Lima J, Haddad DB, Honório LdM, Pinto MF. Heterogeneous Multi-Robot Collaboration for Coverage Path Planning in Partially Known Dynamic Environments. Machines. 2024; 12(3):200. https://doi.org/10.3390/machines12030200
Chicago/Turabian Stylede Castro, Gabriel G. R., Tatiana M. B. Santos, Fabio A. A. Andrade, José Lima, Diego B. Haddad, Leonardo de M. Honório, and Milena F. Pinto. 2024. "Heterogeneous Multi-Robot Collaboration for Coverage Path Planning in Partially Known Dynamic Environments" Machines 12, no. 3: 200. https://doi.org/10.3390/machines12030200
APA Stylede Castro, G. G. R., Santos, T. M. B., Andrade, F. A. A., Lima, J., Haddad, D. B., Honório, L. d. M., & Pinto, M. F. (2024). Heterogeneous Multi-Robot Collaboration for Coverage Path Planning in Partially Known Dynamic Environments. Machines, 12(3), 200. https://doi.org/10.3390/machines12030200