Data Augmentation and Deep Learning Methods for Pressure Prediction in Ignition Process of Solid Rocket Motors
Abstract
:1. Introduction
2. Methodology
2.1. Data Augmentation Method
2.2. Deep Learning Model Structure
2.2.1. One-Dimensional Convolution Structure
2.2.2. Long Short-Term Memory Structure
2.2.3. Convolutional Bidirectional Long Short-Term Structure
2.3. Model Training Process
3. Results and Comparisons
3.1. Data Preparation
3.1.1. Solid Rocket Motor Turbulence Simulation Model
3.1.2. Fluid Simulation Pressure Data
3.1.3. Solid Rocket Motor Ground Experiment Pressure Data
3.1.4. Data Set Partition Processing
3.1.5. Data Normalization Processing
3.2. Different Network Prediction Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, P.; Wang, H.; Zhou, G.; Li, J.; Cai, Q.; Yu, J.; Yuan, Y. Solid Rocket Motor Propellant Grain Burnback Simulation Based on Fast Minimum Distance Function Calculation and Improved Marching Tetrahedron Method. Chin. J. Aeronaut. 2021, 34, 208–224. [Google Scholar] [CrossRef]
- Migliorino, M.T.; Aiello, M.; Berti, M.; Rotondi, M.; D’Alessandro, S.; Bianchi, D.; Jahjah, M.; Pizzarelli, M. Student Firing Tests and Launches with Commercial and Self-Made Solid Rocket Motors. Acta Astronaut. 2022, 197, 23–34. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Dong, Z.; Ma, D.; Yang, B.; Qiu, C. Preliminary Experimental Study on Combustion Characteristics in a Solid Rocket Motor Nozzle Based on the TDLAS System. Energy 2023, 268, 126741. [Google Scholar] [CrossRef]
- Liu, X.; Xu, F.; Cheng, L.; Pan, W.; Jiao, W. Stress Characteristics Analysis of Vertical Bi-Directional Flow Channel Axial Pump Blades Based on Fluid–Structure Coupling. Machines 2022, 10, 368. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, H.; Qian, Z.; Liu, M. Smoothed-Interface SPH Model for Multiphase Fluid-Structure Interaction. J. Comput. Phys. 2024, 518, 113336. [Google Scholar] [CrossRef]
- Tian, H.; Duan, Y.; Zhu, H. Three-Dimensional Numerical Analysis on Combustion Performance and Flow of Hybrid Rocket Motor with Multi-Segmented Grain. Chin. J. Aeronaut. 2020, 33, 1181–1191. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, J.; Jiang, B.; Ding, Y.; Yang, X. Study on Nonlinear Correlation in Modal Coefficients of the Bionic Airfoil. Machines 2023, 11, 88. [Google Scholar] [CrossRef]
- Francois, L.; Dupays, J.; Massot, M. A New Simulation Strategy for Solid Rocket Motor Ignition: Coupling a CFD Code with a One-Dimensional Boundary Flame Model, Verification against a Fully Resolved Approach. In Proceedings of the AIAA Propulsion and Energy 2021 Forum, Online, 9–11 August 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Li, Y.; Chen, X.; Cheng, H.; Zhao, Z. Fluid–Structure Coupled Simulation of Ignition Transient in a Dual Pulse Motor Using Overset Grid Method. Acta Astronaut. 2021, 183, 211–226. [Google Scholar] [CrossRef]
- Song, L.; Jin, Y.; Lin, T.; Zhao, S.; Wei, Z.; Wang, H. Remaining Useful Life Prediction Method Based on the Spatiotemporal Graph and GCN Nested Parallel Route Model. IEEE Trans. Instrum. Meas. 2024, 73, 3511912. [Google Scholar] [CrossRef]
- Chakraborty, S.; Guha, S.; Mishra, D.; Pal, S.K. Federated Learning for Weld Quality Prediction. J. Dyn. Monit. Diagn. 2024. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, D.; Zhuang, X.; Ge, J.; Xiang, J. SGG-DGCN: Wind Turbine Anomaly Identification by Using Deep Graph Convolutional Networks with Similarity Graph Generation Strategy. J. Dyn. Monit. Diagn. 2024. [Google Scholar] [CrossRef]
- Khelif, R.; Chebel-Morello, B.; Malinowski, S.; Laajili, E.; Fnaiech, F.; Zerhouni, N. Direct Remaining Useful Life Estimation Based on Support Vector Regression. IEEE Trans. Ind. Electron. 2017, 64, 2276–2285. [Google Scholar] [CrossRef]
- Melani, A.H.D.A.; Michalski, M.A.D.C.; Da Silva, R.F.; De Souza, G.F.M. A Framework to Automate Fault Detection and Diagnosis Based on Moving Window Principal Component Analysis and Bayesian Network. Reliab. Eng. Syst. Saf. 2021, 215, 107837. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X. A Lightweight CNN for Wind Turbine Blade Defect Detection Based on Spectrograms. Machines 2023, 11, 99. [Google Scholar] [CrossRef]
- Ma, Y.; Du, Z.; Xu, Q.; Qi, J. Flow Field Reconstruction of Compressor Blade Cascade Based on Deep Learning Methods. Aerosp. Sci. Technol. 2024, 155, 109637. [Google Scholar] [CrossRef]
- Dudukcu, H.V.; Taskiran, M.; Taskiran, Z.G.C.; Yildirim, T. Temporal Convolutional Networks with RNN Approach for Chaotic Time Series Prediction. Appl. Soft Comput. 2023, 133, 109945. [Google Scholar] [CrossRef]
- Sarangi, S.; Dash, P.K.; Bisoi, R. Probabilistic Prediction of Wind Speed Using an Integrated Deep Belief Network Optimized by a Hybrid Multi-Objective Particle Swarm Algorithm. Eng. Appl. Artif. Intell. 2023, 126, 107034. [Google Scholar] [CrossRef]
- Sontheimer, M.; Singh, A.-K.; Verma, P.; Chou, S.-Y.; Kuo, Y.-L. LSTM for Modeling of Cylinder Pressure in HCCI Engines at Different Intake Temperatures via Time-Series Prediction. Machines 2023, 11, 924. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, Z.; Zhang, H.; Cai, S.; Zhang, W.; Fan, A.; Xiao, Z.; Li, L. Reliable Monitoring and Prediction Method for Transmission Lines Based on FBG and LSTM. Adv. Eng. Inform. 2024, 62, 102603. [Google Scholar] [CrossRef]
- Hema, C.; Garcia Marquez, F.P. Emotional Speech Recognition Using CNN and Deep Learning Techniques. Appl. Acoust. 2023, 211, 109492. [Google Scholar] [CrossRef]
- Hossain, S.; Umer, S.; Rout, R.K.; Tanveer, M. Fine-Grained Image Analysis for Facial Expression Recognition Using Deep Convolutional Neural Networks with Bilinear Pooling. Appl. Soft Comput. 2023, 134, 109997. [Google Scholar] [CrossRef]
- Chou, J.-S.; Chong, P.-L.; Liu, C.-Y. Deep Learning-Based Chatbot by Natural Language Processing for Supportive Risk Management in River Dredging Projects. Eng. Appl. Artif. Intell. 2024, 131, 107744. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, H.; Zhang, Y. State of Charge Prediction of Lithium-Ion Batteries for Electric Aircraft with Swin Transformer. IEEE/CAA J. Autom. Sin. 2024, 1–3. [Google Scholar] [CrossRef]
- Balshaw, R.; Heyns, P.S.; Wilke, D.N.; Schmidt, S. Temporally-Preserving Latent Variable Models: Offline and Online Training for Reconstruction and Interpretation of Fault Data for Gearbox Condition Monitoring. J. Dyn. Monit. Diagn. 2024, 3, 156–177. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, X.; Zhang, W. Federated Transfer Learning in Fault Diagnosis under Data Privacy with Target Self-Adaptation. J. Manuf. Syst. 2023, 68, 523–535. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Lei, Y.; Li, N.; Yang, B. Dynamic Vision-Based Machinery Fault Diagnosis with Cross-Modality Feature Alignment. IEEE/CAA J. Autom. Sin. 2024, 11, 2068–2081. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Li, X.; Hao, H. Partial Domain Adaptation in Remaining Useful Life Prediction With Incomplete Target Data. IEEE/ASME Trans. Mechatron. 2024, 29, 1903–1913. [Google Scholar] [CrossRef]
- Yang, S.; Ling, L.; Li, X.; Han, J.; Tong, S. Industrial Battery State-of-Health Estimation with Incomplete Limited Data Towards Second-Life Applications. J. Dyn. Monit. Diagn. 2024. [Google Scholar] [CrossRef]
- Qiang, X.; Liu, W.; Lyu, Z.; Ruan, H.; Li, X. A Data-Fusion-Model Method for State of Health Estimation of Li-Ion Battery Packs Based on Partial Charging Curve. Green Energy Intell. Transp. 2024, 3, 100169. [Google Scholar] [CrossRef]
- Surina, G.; Georgalis, G.; Aphale, S.S.; Patra, A.; DesJardin, P.E. Measurement of Hybrid Rocket Solid Fuel Regression Rate for a Slab Burner Using Deep Learning. Acta Astronaut. 2022, 190, 160–175. [Google Scholar] [CrossRef]
- Lee, H.S.; Ko, S.C.; Kwon, S.W.; Lee, J.S. Optimization of a Solid Rocket Motor Design through Neural Network-Assisted Performance Prediction. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8769–8781. [Google Scholar] [CrossRef]
- Lee, H.S.; Kwon, S.W.; Lee, J.S. Neural Networks for the Burn Back Performance of Solid Propellant Grains. Aerosp. Sci. Technol. 2023, 137, 108283. [Google Scholar] [CrossRef]
- Liu, D.; Sun, L.; Miller, T.C. Defect Diagnosis in Solid Rocket Motors Using Sensors and Deep Learning Networks. AIAA J. 2021, 59, 276–281. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, M.; Yang, H.; Wang, X.; Zheng, S.; Li, X. Data-Driven Deep Learning Approach for Thrust Prediction of Solid Rocket Motors. Measurement 2024, 225, 114051. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Zhang, Z.; Deng, F. Deep Learning Based Data Augmentation for Large-Scale Mineral Image Recognition and Classification. Miner. Eng. 2023, 204, 108411. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M.; Furht, B. Text Data Augmentation for Deep Learning. J. Big Data 2021, 8, 101. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, S.; Chen, K. A Conditional Generative Adversarial Network-Based Synthetic Data Augmentation Technique for Battery State-of-Charge Estimation. Appl. Soft Comput. 2023, 142, 110281. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, J.; Wang, Y. A Novel Fractional Nonlinear State Estimation Algorithm in Non-Gaussian Noise Environment. Measurement 2024, 227, 114261. [Google Scholar] [CrossRef]
- Parineh, H.; Sarvi, M.; Bagloee, S.A. Detecting Emergency Vehicles With 1D-CNN Using Fourier Processed Audio Signals. Measurement 2023, 223, 113784. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Yang, H.; Yeh, C.-C.M.; Wang, L. Visual Analytics for RNN-Based Deep Reinforcement Learning. IEEE Trans. Vis. Comput. Graph. 2022, 28, 4141–4155. [Google Scholar] [CrossRef]
- Mansouri, M.; Dhibi, K.; Hajji, M.; Bouzara, K.; Nounou, H.; Nounou, M. Interval-Valued Reduced RNN for Fault Detection and Diagnosis for Wind Energy Conversion Systems. IEEE Sens. J. 2022, 22, 13581–13588. [Google Scholar] [CrossRef]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The Performance of LSTM and BiLSTM in Forecasting Time Series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 3285–3292. [Google Scholar]
Parameter Name | Values | Parameter Name | Methods |
---|---|---|---|
Learning rate1 | 1 × 10−4 | Learning rate2 | 1 × 10−5 |
Activation function | LeakyReLU | optimizer | Adam |
Batch size | 10 | Loss function | MSE |
Maximum epochs | 50 | Dropout | 0.1 |
Error | AGN-CBiLSTM | CNN | GRU | LSTM | BiLSTM |
---|---|---|---|---|---|
MAE | 0.1431 | 0.2458 | 0.2772 | 0.2390 | 0.2233 |
RMSE | 0.1779 | 0.2989 | 0.3210 | 0.2803 | 0.2672 |
MAPE | 3.27% | 5.46% | 6.90% | 5.88% | 4.43% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yu, P.; Cui, Y.; Lou, B.; Li, X. Data Augmentation and Deep Learning Methods for Pressure Prediction in Ignition Process of Solid Rocket Motors. Machines 2024, 12, 906. https://doi.org/10.3390/machines12120906
Yang H, Yu P, Cui Y, Lou B, Li X. Data Augmentation and Deep Learning Methods for Pressure Prediction in Ignition Process of Solid Rocket Motors. Machines. 2024; 12(12):906. https://doi.org/10.3390/machines12120906
Chicago/Turabian StyleYang, Huixin, Pengcheng Yu, Yan Cui, Bixuan Lou, and Xiang Li. 2024. "Data Augmentation and Deep Learning Methods for Pressure Prediction in Ignition Process of Solid Rocket Motors" Machines 12, no. 12: 906. https://doi.org/10.3390/machines12120906
APA StyleYang, H., Yu, P., Cui, Y., Lou, B., & Li, X. (2024). Data Augmentation and Deep Learning Methods for Pressure Prediction in Ignition Process of Solid Rocket Motors. Machines, 12(12), 906. https://doi.org/10.3390/machines12120906