An Efficient Lane Detection Network with Channel-Enhanced Coordinate Attention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Related Work
2.1.1. Lane Detection by Semantic Segmentation
2.1.2. Feature Enhancement by Spatial Attention
2.1.3. Feature Enhancement by Channel Attention
2.2. Method
2.2.1. Architecture Design
2.2.2. Channel-Enhanced Coordinate Attention
- 1.
- Revisit ECANet.
- 2.
- Revisit Attention Mechanisms.
- 3.
- Revisit Coordinate Attention (CA Block).
- 4.
- CCA Block.
- Coordinate Information Squeezing.
- Spatial Attention Generation.
2.2.3. Dual-Channel Convolutional Decoder
3. Results and Discussions
3.1. Experiment Implementation and Dataset
3.1.1. Dataset of Experiment
3.1.2. Evaluation Metrics of Experiment
3.1.3. Implement Settings of Experiment
3.2. Experimental Results and Discussions
3.2.1. Main Results
- 1.
- Qualitative Analysis.
- 2.
- Quantitative Analysis.
3.2.2. Ablation Study
- 1.
- Loss of Each Module.
- 2.
- Effectiveness of Each Module.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Chen, X.; Zhu, S.; Tan, P. CondLaneNet: A Top-to-down Lane Detection Framework Based on Conditional Convolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Al-Rajab, M.; Loucif, S.; Kousi, O.; Irani, M. Smart Application for Every Car (SAEC). (AR Mobile Application). Alex. Eng. J. 2022, 61, 8573–8584. [Google Scholar] [CrossRef]
- Dong, B.; Lin, H.; Chang, C. Driver Fatigue and Distracted Driving Detection Using Random Forest and Convolutional Neural Network. Appl. Sci. 2022, 12, 8674. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Wang, K.; Li, Z.; Li, H.; Liu, S. Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review. J. Traffic Transp. Eng. 2020, 7, 748–774. [Google Scholar] [CrossRef]
- Zou, Q.; Jiang, H.; Dai, Q.; Yue, Y.; Chen, L.; Wang, Q. Robust Lane Detection From Continuous Driving Scenes Using Deep Neural Networks. IEEE Trans. Veh. Technol. 2020, 69, 41–54. [Google Scholar] [CrossRef]
- Kachhoria, R.; Jaiswal, S.; Lokhande, M.; Rodge, J. Chapter 7-Lane detection and path prediction in autonomous vehicle using deep learning. In Intelligent Edge Computing for Cyber Physical Applications, 2nd ed.; Hemanth, D., Gupta, B., Elhoseny, M., Shinde, S., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 111–127. [Google Scholar]
- Guo, Y.; Zhou, J.; Dong, Q.; Bian, Y.; Li, Z.; Xiao, J. A lane-level localization method via the lateral displacement estimation model on expressway. Expert Syst. Appl. 2024, 243, 122848. [Google Scholar] [CrossRef]
- Lin, H.; Chang, C.; Tran, V. Lane detection networks based on deep neural networks and temporal information. Alex. Eng. J. 2024, 98, 10–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Z.; Zhang, X.; Xue, J.; Liao, Q. Deep Learning in Lane Marking Detection: A Survey. IEEE Trans. Intell. Transp. Syst. 2022, 23, 5976–5992. [Google Scholar] [CrossRef]
- Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y. Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 2022, 493, 626–646. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, S. A comprehensive review of object detection with deep learning. Digit. Signal Process. 2023, 132, 103812. [Google Scholar] [CrossRef]
- Hao, W. Review on lane detection and related methods. Cogn. Robot. 2023, 3, 135–141. [Google Scholar] [CrossRef]
- Parashar, A.; Rhu, M.; Mukkara, A.; Puglielli, A.; Venkatesan, R.; Khailany, B.; Emer, J.; Keckler, S.; Dally, W. SCNN: An accelerator for compressed-sparse convolutional neural networks. In Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture, Toronto, ON, Canada, 24–28 June 2017. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Zheng, T.; Fang, H.; Zhang, Y.; Tang, W.; Yang, Z.; Liu, H.; Cai, D. RESA: Recurrent Feature-Shift Aggregator for Lane Detection. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 9th International Conference on Learning Representations, Vienna, Austria, 3–7 May 2021. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- TuSimple. Available online: https://paperswithcode.com/sota/lane-detection-on-tusimple (accessed on 20 October 2018).
- Jonathan, L.; Evan, S.; Trevor, D. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–15 June 2015. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.P.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Álvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. In Proceedings of the Annual Conference on Neural Information Processing Systems 2021, Virtual Event, 6–14 December 2021. [Google Scholar]
- Zhang, W.; Pang, J.; Chen, K.; Loy, C.C. K-Net: Towards Unified Image Segmentation. In Proceedings of the Annual Conference on Neural Information Processing Systems 2021, Online, 6–14 December 2021. [Google Scholar]
- Cheng, B.; Schwing, A.G.; Kirillov, A. Per-Pixel Classification is Not All You Need for Semantic Segmentation. In Proceedings of the Annual Conference on Neural Information Processing Systems 2021, Online, 6–14 December 2021. [Google Scholar]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-attention Mask Transformer for Universal Image Segmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Guo, Y.; Li, Y.; Feris, R.; Wang, L.; Rosing, T. Depthwise Convolution is All You Need for Learning Multiple Visual Domains. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, Virtual Event, 22 February–1 March 2022. [Google Scholar]
Net | Res18-BUSD | Res34-BUSD | LaneATT | LaneNet | SCNN | RESA | CCA-18 (ours) | CCA-34 (ours) |
---|---|---|---|---|---|---|---|---|
Params (M) | 11.48 | 21.59 | 22.13 | 42.9 | 21.94 | 25.36 | 11.38 | 21.48 |
Accuracy | 0.9269 | 0.9284 | 0.9302 | 0.9338 | 0.9653 | 0.9686 | 0.9678 | 0.9681 |
FP | 0.0948 | 0.0918 | 0.0886 | 0.0780 | 0.0617 | 0.0395 | 0.0501 | 0.0351 |
FN | 0.0822 | 0.792 | 0.0734 | 0.0224 | 0.0180 | 0.0283 | 0.0298 | 0.0314 |
Latency (MS) | 391 | 543 | 442 | 414 | 429 | 746 | 238 | 392 |
CCA | RESA | SCNN | ||||
---|---|---|---|---|---|---|
Category | Acc | Lat | Acc | Lat | Acc | Lat |
bad light | 0.9693 | 311 | 0.9643 | 340 | 0.9653 | 308 |
tunnel | 0.9819 | 292 | 0.9797 | 816 | 0.9599 | 325 |
normal | 0.9704 | 136 | 0.9721 | 185 | 0.9643 | 355 |
dirty | 0.9649 | 400 | 0.9731 | 436 | 0.9638 | 369 |
park | 0.9592 | 221 | 0.9605 | 259 | 0.9584 | 299 |
snow night | 0.965 | 236 | 0.9674 | 285 | 0.962 | 356 |
follow | 0.9797 | 167 | 0.9693 | 220 | 0.9685 | 377 |
mean | 0.9681 | 280 | 0.9649 | 538 | 0.9602 | 354 |
Aggregator | Parameters | Lat1 | Lat2 | Lat3 |
---|---|---|---|---|
RESA | 2949,120 | 465.7 | 1347.2 | 3931.1 |
SCNN | 589,824 | 316.8 | 316.8 | 2310.7 |
CCA | 118,800 | 343.7 | 427 | 548.1 |
Decoder | Parameters | Lat1 | Lat2 | Lat3 |
---|---|---|---|---|
BUSD | 239,008 | 832.8 | 2197 | 128,000.1 |
PlainDecoder | 903 | 5.8 | 18.5 | 53.6 |
PDecoder | 14,466 | 290.7 | 408.8 | 681 |
Method | Acc | Paras | Lat |
---|---|---|---|
RESA | 0.9686 | 25.36 | 0.602 |
SCNN | 0.9653 | 21.94 | 0.429 |
CCA | 0.9663 | 21.466 | 0.375 |
+BUSD | 0.9672 (↑0.00009) | 21.696 (↑0.23) | 0.425 (↑0.05) |
+PlainDecoder | 0.9639 (↓0.0024) | 21.47 (↑0.004) | 0.383 (↑0.008) |
+PDecoder | 0.9681 (↑0.00018) | 21.476 (↑0.01) | 0.392 (↑0.017) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Hao, Z.; Zhu, M.; Wang, J. An Efficient Lane Detection Network with Channel-Enhanced Coordinate Attention. Machines 2024, 12, 870. https://doi.org/10.3390/machines12120870
Xu K, Hao Z, Zhu M, Wang J. An Efficient Lane Detection Network with Channel-Enhanced Coordinate Attention. Machines. 2024; 12(12):870. https://doi.org/10.3390/machines12120870
Chicago/Turabian StyleXu, Ke, Zhicheng Hao, Ming Zhu, and Jiarong Wang. 2024. "An Efficient Lane Detection Network with Channel-Enhanced Coordinate Attention" Machines 12, no. 12: 870. https://doi.org/10.3390/machines12120870
APA StyleXu, K., Hao, Z., Zhu, M., & Wang, J. (2024). An Efficient Lane Detection Network with Channel-Enhanced Coordinate Attention. Machines, 12(12), 870. https://doi.org/10.3390/machines12120870