Efficiency Analysis and Optimization of Two-Speed-Region Operation of Permanent Magnet Synchronous Motor Taking into Account Iron Loss Based on Linear Non-Equilibrium Thermodynamics
Abstract
:1. Introduction
2. Research Method
2.1. Mathematical Description of IPMSM Dynamics Taking into Account Iron Loss
2.2. Steady-State Equations
2.3. Initial Positions of LNTD
2.4. Performance Indicators of the Universal PC
- relation of forces
- phenomenological relationship
3. Results and Their Discussion
3.1. Parameters of the Studied Machine
3.2. PMSM as Linear PC
3.3. Efficiency Analysis of SPMSM Operation in the Constant-Torque Region
3.4. Efficiency Optimization of the IPMSM Operation in the Constant-Torque Region
3.5. Efficiency Analysis of the IPMSM Operation in the Constant-Power Region
4. An Example of Applying the Obtained Results to Develop an IPMSM Control System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DC | Direct Current |
EV | Electric Vehicle |
FEM | Finite Element Method |
FOC | Field Oriented Control |
FW | Flux Weakening |
IPMSM | Interior PMSM |
LNTD | Linear Non-Equilibrium Thermodynamics |
LUT | Look-up Table |
MEC | Maximum Efficiency Control |
MTPA | Maximum Torque per Ampere |
NN | Neural Network |
PC | Power Converter |
PM | Permanent Magnet |
PMSM | Permanent Magnet Synchronous Machine |
PSO | Particle Swarm Optimization |
P&O | Perturb and Observe |
SISO | Single Input and Single Output |
SPMSM | Surface-Mounted PMSM |
SVM | Space Vector Modulation |
References
- Singh, S.; Singh, S.N.; Tiwari, A.N. PMSM drives and its application: An overview. Recent Adv. Electr. Electron. Eng. 2023, 16, 4–16. [Google Scholar] [CrossRef]
- Loganayaki, A.; Kumar, R.B. Permanent Magnet Synchronous Motor for Electric Vehicle Applications. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 1064–1069. [Google Scholar] [CrossRef]
- Sardar, M.U.; Yaqoob, M.; Akbar, S.; Shah, S.I.A.; Shahid, M.U.; Mutloob, T. Permanent magnet synchronous machine control performance and analysis for environment-friendly electric vehicle applications. Eng. Proc. 2023, 46, 7. [Google Scholar] [CrossRef]
- Thampi, P.; Kiran, C. A review on controlling techniques for permanent magnet synchronous motor (PMSM) and current state of the art in the research area. Commun. Appl. Electron. 2019, 7, 8–17. [Google Scholar] [CrossRef]
- Bianchi, N.; Carlet, P.G.; Cinti, L.; Ortombina, L. A review about flux-weakening operating limits and control techniques for synchronous motor drives. Energies 2022, 15, 1930. [Google Scholar] [CrossRef]
- Tinazzi, F.; Bolognani, S.; Calligaro, S.; Kumar, P.; Petrella, R.; Zigliotto, M. Classification and Review of MTPA Algorithms for Synchronous Reluctance and Interior Permanent Magnet Motor Drives. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE ′19 ECCE Europe), Genova, Italy, 3–5 September 2019. [Google Scholar] [CrossRef]
- Li, Z.; O’Donnell, D.; Li, W.; Song, P.; Balamurali, A.; Kar, N.C. A Comprehensive Review of State-of-the-Art Maximum Torque per Ampere Strategies for Permanent Magnet Synchronous Motors. In Proceedings of the 2020 10th International Electric Drives Production Conference (EDPC), Ludwigsburg, Germany, 8–9 December 2020. [Google Scholar] [CrossRef]
- Zhuoyonga, W.; Xiaodonga, Y.; Jiakanga, L.; Liangxua, X.; Huia, T.; Kea, L. Research on IPMSM control based on MTPA. Procedia Comput. Sci. 2022, 208, 635–641. [Google Scholar] [CrossRef]
- Dianov, A.; Tinazzi, F.; Calligaro, S.; Bolognani, S. Review and classification of MTPA control algorithms for synchronous motors. IEEE Trans. Power Electr. 2022, 37, 3990–4007. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, B.; Yuan, X.; Zhang, X. Efficiency Optimization Control of PMSM in Electric Vehicle-A Comparative Study. In Proceedings of the 2023 7th CAA International Conference on Vehicular Control and Intelligence (CVCI), Changsha, China, 27–29 October 2023. [Google Scholar] [CrossRef]
- Ba, X.; Gong, Z.; Guo, Y.; Zhang, C.; Zhu, J. Development of equivalent circuit models of permanent magnet synchronous motors considering core loss. Energies 2022, 15, 1995. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Jose, B.; Muralidharan, A.K.; Mohan, N.; Basu, K. Offline Model Based MTPA Methodology for Optimum Performance of Interior Permanent Magnet Machines over Full Range of Speed and Torque. In Proceedings of the 2022 IEEE Transportation Electrification Conference & Expo (ITEC), Anaheim, CA, USA, 15–17 June 2022. [Google Scholar] [CrossRef]
- Lee, B.-H.; Jung, J.-W. Analysis of External Excited Synchronous Machine for EV Traction Considering Maximum Efficiency Control. In Proceedings of the 2023 IEEE Transportation Electrification Conference and Expo, Asia-Pacific, Chiang Mai, Thailand, 2 January 2024. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, R.; Yang, H.; Liu, G.; Yao, S. Electromagnetic resistance model based maximum efficiency control for IPMSM with reduced experimental cost. IEEE Trans. Transp. Electron. 2024, 10, 6989–7002. [Google Scholar] [CrossRef]
- Xu, K.; Guo, Y.; Lei, G.; Zhu, J. Estimation of iron loss in permanent magnet synchronous motors based on particle swarm optimization and a recurrent neural network. Magnetism 2023, 3, 327–342. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Ma, J.; Chen, Z.; Liu, A.; Peretti, L. Hybrid analytical model for predicting the electromagnetic losses in surface-mounted permanent-magnet motors. IEEE Trans. Transp. Electron. 2024, 10, 1388–1397. [Google Scholar] [CrossRef]
- Park, J.; Cho, H.-J.; Yun, J.; Sul, S.-K. Online MTPA Tracking of IPMSM Based on Min-Max Optimization. In Proceedings of the 2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023—ECCE Asia), Jeju Island, Republic of Korea, 22–25 May 2023. [Google Scholar] [CrossRef]
- Wu, Z.; Tian, D.; Liu, H. Research on MTPA Control of IPMSM for Electric Vehicle. In Proceedings of the 2024 IEEE 7th International Electrical and Energy Conference (CIEEC), Harbin, China, 10–12 May 2024. [Google Scholar] [CrossRef]
- Song, H.; Duan, D.; Yan, Y.; Li, X.; Xie, M. Fractional-order extremum seeking method for maximum torque per ampere control of permanent magnet synchronous motor. Fractal Fract. 2023, 7, 858. [Google Scholar] [CrossRef]
- Dong, W.; Li, S.; Gao, Y.; Balasubramanian, B.; Hong, Y.-K.; Sun, Y.; Cheng, B. Neural network with cloud-based training for MTPA, flux-weakening, and MTPV control of IPM motors and drives. IEEE Trans. Transp. Electron. 2024, 10, 1012–1030. [Google Scholar] [CrossRef]
- Sun, L.; Guo, J.; Kawaguchi, T.; Hashimoto, S.; Jiang, W. Online MTPA control of IPM motor using NN-based perturb and observe algorithm. IEEE Access 2023, 11, 122458–122469. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Wu, Y.; Wang, L.; Xue, Y. Model Based Flux Weakening Control Strategy of Permanent Magnet Synchronous Motor with Voltage Feedback Compensation. In Proceedings of the 2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia), Chengdu, China, 17–20 May 2024. [Google Scholar] [CrossRef]
- Lin, F.-J.; Liu, C.-W.; Wang, P.-L. Voltage control of IPMSM servo drive in constant power region with intelligent parameter estimation. IEEE Access 2022, 10, 99243–99256. [Google Scholar] [CrossRef]
- Khanh, P.Q.; Huy Anh, H.P. Advanced deep flux weakening operation control strategies for IPMSM. Int. J. El. Comp. Eng. (IJECE) 2021, 11, 3798–3808. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, F.; Li, Z.; Ke, D.; Kennel, R.; Heldwein, M.L. A robust unified strategy for maximum torque per ampere and field weakening in permanent magnet synchronous motor. IEEE Trans. Power Electron. 2024, 39, 5286–5297. [Google Scholar] [CrossRef]
- Huang, K.; Peng, W.; Lai, C.; Feng, G. Efficient maximum torque per ampere (MTPA) control of interior PMSM using sparse bayesian based offline data-driven model with online magnet temperature compensation. IEEE Trans. Power Electron. 2023, 38, 5192–5203. [Google Scholar] [CrossRef]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Christen, T. Efficiency and Power in Energy Conversion and Storage: Basic Physical Concepts; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxfordshire, UK, 2019. [Google Scholar]
- Demirel, Y. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 2nd ed.; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Westerhoff, H.V.; van Dam, K. Thermodynamics and Control of Biological Free-Energy Transduction; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Shchur, I.; Rusek, A.; Lis, M. Optimal frequency control of the induction electric drive based on the thermodynamics of irreversible processes. Electromechanical Comput. Syst. 2011, 3, 377–380. [Google Scholar]
- Shchur, I.; Lis, M.; Biletskyi, Y. A non-equilibrium thermodynamic approach for analysis of power conversion efficiency in the wind energy system. Energies 2023, 16, 5234. [Google Scholar] [CrossRef]
- Windisch, T.; Hofmann, W. A novel approach to MTPA tracking control of AC drives in vehicle propulsion systems. IEEE Trans. Vehic. Technol. 2018, 67, 9294–9302. [Google Scholar] [CrossRef]
- Shchur, I.; Rusek, A.; Mandzyuk, M. Power effective work of PMSM in electric vehicles at the account of magnetic saturation and iron losses. Prz. Elektrotechniczny (Electr. Rev.) 2015, 1, 199–202. [Google Scholar] [CrossRef]
- Fernandez-Bernal, F.; Garcia-Cerrada, A.; Faure, R. Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement. IEEE Trans. Ind. Appl. 2001, 37, 1265–1272. [Google Scholar] [CrossRef]
- Pairo, H.; Shoulaie, A. Operating region and maximum attainable speed of energy-efficient control methods of interior permanent-magnet synchronous motors. IET Power Electron. 2017, 10, 555–567. [Google Scholar] [CrossRef]
- Gao, M.; Chu, G.; Xiao, D.; Rahman, A.; Dutta, R. Loss minimization control of a high-speed interior permanent magnet machine. IEEE Trans. Ind. Appl. 2024, 60, 7001–7012. [Google Scholar] [CrossRef]
- Chen, Z.; Jin, S.; Shen, Y.; Ma, Y.; Mao, X.; Shi, T. Maximum efficiency per torque control of IPMSM based on loss criterion acquisition. IEEE Trans. Power Electron. 2024, 39, 14107–14117. [Google Scholar] [CrossRef]
- Di Tommaso, O.; Miceli, R.; Nevoloso, C.; Scaglione, G.; Schettino, G. Improved High-Fidelity IPMSM mathematical model Including Saturation, Cross-Coupling, Torque Ripple and Iron Loss effects. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022. [Google Scholar] [CrossRef]
- Nicola, M.; Nicola, C.-I.; Prejbeanu, R.; Popescu, M. IPMSM Control System Based on Maximum Torque Per Ampere Strategy. In Proceedings of the 2024 6th Global Power, Energy and Communication Conference (GPECOM), Budapest, Hungary, 4–7 June 2024. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Rated power, Pn (kW) | 10 |
Rated DC voltage, VDC.n (V) | 150 |
Based angular velocity, ωn (s−1) | 100 |
Maximum angular velocity, ωn (s−1) | 200 |
Rated torque, TG.n (Nm) | 100 |
Rated rms phase current, in (A) | 63 |
Number of pole pairs, pp | 2 |
PM flux linkage, ψpm (Vs) | 0.35 |
Winding resistance, R (Ω) | 0.1 |
d-axis winding inductance, Ld (mH) | 1 |
q-axis winding inductance, Lq (mH) | 3 |
Rated equivalent iron loss resistance, Rc.n (Ω) | 14.1 |
TL, Nm | 25 | 50 | 75 | 100 |
id0, A | −3.0 | −11.5 | −21.5 | −31.5 |
T* | 0.2041 | 0.4082 | 0.6122 | 0.8163 |
id* | −0.0123 | −0.0719 | −0.1306 | −0.1885 |
id, A | −2.15 | −12.58 | −22.86 | −32.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shchur, I.; Biletskyi, Y.; Kopchak, B. Efficiency Analysis and Optimization of Two-Speed-Region Operation of Permanent Magnet Synchronous Motor Taking into Account Iron Loss Based on Linear Non-Equilibrium Thermodynamics. Machines 2024, 12, 826. https://doi.org/10.3390/machines12110826
Shchur I, Biletskyi Y, Kopchak B. Efficiency Analysis and Optimization of Two-Speed-Region Operation of Permanent Magnet Synchronous Motor Taking into Account Iron Loss Based on Linear Non-Equilibrium Thermodynamics. Machines. 2024; 12(11):826. https://doi.org/10.3390/machines12110826
Chicago/Turabian StyleShchur, Ihor, Yurii Biletskyi, and Bohdan Kopchak. 2024. "Efficiency Analysis and Optimization of Two-Speed-Region Operation of Permanent Magnet Synchronous Motor Taking into Account Iron Loss Based on Linear Non-Equilibrium Thermodynamics" Machines 12, no. 11: 826. https://doi.org/10.3390/machines12110826
APA StyleShchur, I., Biletskyi, Y., & Kopchak, B. (2024). Efficiency Analysis and Optimization of Two-Speed-Region Operation of Permanent Magnet Synchronous Motor Taking into Account Iron Loss Based on Linear Non-Equilibrium Thermodynamics. Machines, 12(11), 826. https://doi.org/10.3390/machines12110826