A Systematic Literature Review: Industry 4.0 Based Monitoring and Control Systems in Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
- ⇒
- Stage 1: Defining the research aims/questions.
- ⇒
- Stage 2: Planning the research.
- ⇒
- Stage 3: Searching the literature.
- ⇒
- Stage 4: Evaluating the results.
- ⇒
- Stage 5: Finalizing the review with obtained results.
- ▪
- RQ1: Which I4.0 technologies drive monitoring and control of AM systems?
- ▪
- RQ2: What are the implementations of AM systems’ monitoring and control?
- ▪
- RQ3: Which industry area uses monitoring and control of AM systems?
- ▪
- RQ4: What is the impact of AM monitoring and control on sustainability?
- ▪
- RQ5: Are the provided digital monitoring and control solutions applicable for SMEs when the financial implications are concerned?
3. Literature Review
3.1. Implementation-Based Monitoring and Control
3.2. Field of Application-Based Monitoring and Control
3.3. Sustainability
3.4. Cost-Effective Solutions
4. Results and Discussion
Future Research Recommendations
- ⇒
- There is a need for further research on the application of technologies such as digital twins, augmented reality/virtual reality and cyber-physical systems for monitoring and control purposes across various industries.
- ⇒
- The properties of 3D printed parts are influenced by environmental conditions and parameter variations during the printing process. Therefore, comprehensive monitoring and control studies should be conducted in this field, focusing on tracking and analyzing the effects of materials, processes and their interactions on the final printed parts.
- ⇒
- The use of Additive Manufacturing (AM) in medical domains and its adoption by small and medium enterprises (SMEs) require the development of economically viable monitoring and control systems. These systems should be specifically tailored to meet the unique needs of SMEs in the medical sector, while also addressing financial and technological barriers to their implementation.
- ⇒
- Resource tracking and control are crucial aspects of sustainability studies. Therefore, more research is needed to develop cost-effective, user-friendly, and adaptable monitoring and control systems that can facilitate effective resource management while supporting sustainable practices.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Takakuwa, S.; Veza, I.; Celar, S. “Industry 4.0” in Europe and East Asia. Ann. DAAAM Proc. 2018, 29, 61–83. [Google Scholar]
- Tartici, I.; Kilic, Z.M.; Da Silva Bartolo, P.J. Impact of Additive Manufacturing in SMEs; Springer Nature: Singapore, 2023; pp. 103–111. [Google Scholar] [CrossRef]
- Martinsuo, M.; Luomaranta, T. Adopting additive manufacturing in SMEs: Exploring the challenges and solutions. J. Manuf. Technol. Manag. 2018, 29, 937–957. [Google Scholar] [CrossRef]
- Beltrami, M.; Orzes, G. Additive Manufacturing: Application Perspectives in Small and Medium Enterprises. Chiang Mai Univ. J. Nat. Sci. 2021, 20, e2021024. [Google Scholar] [CrossRef]
- Commission, E. User Guide to the SME Definition; Enterprise and Industry Publications; European Commission: Brussels, Belgium, 2016; Available online: https://op.europa.eu/en/publication-detail/-/publication/79c0ce87-f4dc-11e6-8a35-01aa75ed71a1 (accessed on 18 December 2022).
- Okoli, C.; Schabram, K. A Guide to Conducting a Systematic Literature Review of Information Systems Research. Res. Methods Methodol. Account. Ej. 2010. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. JPER 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Booth, A.; Sutton, A.; Clowes, M.; Martyn-St James, M. Systematic Approaches to a Successful Literature Review; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- McCann, R.; Obeidi, M.A.; Hughes, C.; McCarthy, É.; Egan, D.S.; Vijayaraghavan, R.K.; Joshi, A.M.; Acinas Garzon, V.; Dowling, D.P.; McNally, P.J.; et al. In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: A review. Addit. Manuf. 2021, 45, 102058. [Google Scholar] [CrossRef]
- Arrizubieta, J.I.; Ruiz, J.E.; Martinez, S.; Ukar, E.; Lamikiz, A. Intelligent nozzle design for the Laser Metal Deposition process in the Industry 4.0. Procedia Manuf. 2017, 13, 1237–1244. [Google Scholar] [CrossRef]
- Oehlmann, P.; Osswald, P.; Blanco, J.C.; Friedrich, M.; Rietzel, D.; Witt, G. Modeling Fused Filament Fabrication using Artificial Neural Networks. Prod. Eng. 2021, 15, 467–478. [Google Scholar] [CrossRef]
- Kadam, V.; Kumar, S.; Bongale, A.; Wazarkar, S.; Kamat, P.; Patil, S. Enhancing surface fault detection using machine learning for 3d printed products. Appl. Syst. Innov. 2021, 4, 34. [Google Scholar] [CrossRef]
- Kim, D.B.; Denno, P.O.; Jones, A.T. A model-based approach to refine process parameters in smart manufacturing. CERA 2015, 23, 365–376. [Google Scholar] [CrossRef]
- Gunasegaram, D.R.; Murphy, A.B.; Barnard, A.; DebRoy, T.; Matthews, M.J.; Ladani, L.; Gu, D. Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing. Addit. Manuf. 2021, 46, 102089. [Google Scholar] [CrossRef]
- Gunasegaram, D.R.; Murphy, A.B.; Matthews, M.J.; DebRoy, T. The case for digital twins in metal additive manufacturing. J. Phys. Mater. 2021, 4, 040401. [Google Scholar] [CrossRef]
- Zheng, P.; Sivabalan, A.S. A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment. Robot. Comput. Integr. Manuf. 2020, 64, 101958. [Google Scholar] [CrossRef]
- Okwudire, C.; Huggi, S.; Supe, S.; Huang, C.; Zeng, B. Low-Level Control of 3D Printers from the Cloud: A Step toward 3D Printer Control as a Service. Inventions 2018, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- Bueno, A.; Godinho Filho, M.; Frank, A.G. Smart production planning and control in the Industry 4.0 context: A systematic literature review. Comput. Ind. Eng. 2020, 149, 106774. [Google Scholar] [CrossRef]
- Darwish, L.R.; Farag, M.M.; El-Wakad, M.T. Towards Reinforcing Healthcare 4.0: A Green Real-Time IIoT Scheduling and Nesting Architecture for COVID-19 Large-Scale 3D Printing Tasks. IEEE Access 2020, 8, 213916–213927. [Google Scholar] [CrossRef]
- Elhoone, H.; Zhang, T.; Anwar, M.; Desai, S. Cyber-based design for additive manufacturing using artificial neural networks for Industry 4.0. Int. J. Prod. Res. 2020, 58, 2841–2861. [Google Scholar] [CrossRef]
- Zawadzki, P.; Zywicki, K. Smart product design and production control for effective mass customization in the industry 4.0 concept. MPER 2016, 7, 105–112. [Google Scholar] [CrossRef]
- Kang, H.S.; Noh, S.D.; Son, J.Y.; Kim, H.; Park, J.H.; Lee, J.Y. The FaaS system using additive manufacturing for personalized production. Rapid Prototyp. J. 2018, 24, 1486–1499. [Google Scholar] [CrossRef]
- Gupta, S.; Meissonier, R.; Drave, V.A.; Roubaud, D. Examining the impact of Cloud ERP on sustainable performance: A dynamic capability view. IJIM 2020, 51, 102028. [Google Scholar] [CrossRef]
- Paszkiewicz, A.; Budzik, G.; Bolanowski, M.; Woźniak, J.; Przytuła, M.; Kiełbicki, M.; Poliński, P.; Kochmański, Ł. Incremental processing of polymer materials using the INDUSTRY 4.0 network structure. Polim./Polym. 2021, 66, 418–425. [Google Scholar] [CrossRef]
- Mazur, D.; Paszkiewicz, A.; Bolanowski, M.; Budzik, G.; Oleksy, M. Analysis of possible SDN use in the rapid prototyping process as part of the Industry 4.0. Bull. Pol. Acad. Sci. Tech. Sci. 2019, 67, 21–30. [Google Scholar] [CrossRef]
- Xu, X.; Seijo-Rabina, A.; Awad, A.; Rial, C.; Gaisford, S.; Basit, A.W.; Goyanes, A. Smartphone-enabled 3D printing of medicines. Int. J. Pharm. 2021, 609, 121199. [Google Scholar] [CrossRef] [PubMed]
- Bordron, M.; Mehdi-Souzani, C.; Bruneau, O. Inline measurement strategy for additive manufacturing. Proc. Inst. Mech. Eng. Part B 2019, 233, 1402–1411. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Pires, J.N.; Azar, A. A novel multi-brand robotic software interface for industrial additive manufacturing cells. Ind. Robot. 2020, 47, 581–592. [Google Scholar] [CrossRef]
- Wu, H.; Liu, S.; Zhang, Y.; Liao, H.; Raoelison, R.N.; Deng, S. New Process Implementation to Enhance Cold Spray-Based Additive Manufacturing. J. Therm. Spray Technol. 2021, 30, 1284–1293. [Google Scholar] [CrossRef]
- Di Cataldo, S.; Vinco, S.; Urgese, G.; Calignano, F.; Ficarra, E.; MacIi, A.; MacIi, E. Optimizing Quality Inspection and Control in Powder Bed Metal Additive Manufacturing: Challenges and Research Directions. Proc. IEEE 2021, 109, 326–346. [Google Scholar] [CrossRef]
- Francis, J.; Bian, L. Deep Learning for Distortion Prediction in Laser-Based Additive Manufacturing using Big Data. Manuf. Lett. 2019, 20, 10–14. [Google Scholar] [CrossRef]
- Omairi, A.; Ismail, Z.H. Towards machine learning for error compensation in additive manufacturing. Appl. Sci. 2021, 11, 2375. [Google Scholar] [CrossRef]
- Okarma, K.; Fastowicz, J. Improved quality assessment of colour surfaces for additive manufacturing based on image entropy. Pattern Anal. Appl. 2020, 23, 1035–1047. [Google Scholar] [CrossRef] [Green Version]
- Scimone, R.; Taormina, T.; Colosimo, B.M.; Grasso, M.; Menafoglio, A.; Secchi, P. Statistical Modeling and Monitoring of Geometrical Deviations in Complex Shapes With Application to Additive Manufacturing. Technometrics 2022, 64, 437–456. [Google Scholar] [CrossRef]
- Klingaa, C.G.; Mohanty, S.; Funch, C.V.; Hjermitslev, A.B.; Haahr-Lillevang, L.; Hattel, J.H. Towards a digital twin of laser powder bed fusion with a focus on gas flow variables. JMP 2021, 65, 312–327. [Google Scholar] [CrossRef]
- Rusu, C.C.; Belaid, S.; Mistodie, L.R.; Adjerid, S. Condition-based maintenance model for the optimization of smart manufacturing processes. Ann. "Dunarea De Jos" Univ. Galati Fascicle XII Weld. Equip. Technol. 2019, 30, 34–42. [Google Scholar] [CrossRef]
- Sproch, F.; Nevima, J. Use of Smart 3D Printing Technology in Conventional Engineering Production to Detect and Prevent the Occurrence of Defects. MM Sci. J. 2021, 2021, 5441–5447. [Google Scholar] [CrossRef]
- Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.H.; Ong, J.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Disrupting 3D printing of medicines with machine learning. Trends Pharmacol. Sci. 2021, 42, 745–757. [Google Scholar] [CrossRef]
- Muñiz Castro, B.; Elbadawi, M.; Ong, J.J.; Pollard, T.; Song, Z.; Gaisford, S.; Pérez, G.; Basit, A.W.; Cabalar, P.; Goyanes, A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J. Control. Release 2021, 337, 530–545. [Google Scholar] [CrossRef]
- Zhu, Z.; Ng, D.W.H.; Park, H.S.; McAlpine, M.C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat. Rev. Mater. 2021, 6, 27–47. [Google Scholar] [CrossRef]
- Awad, A.; Trenfield, S.J.; Pollard, T.D.; Ong, J.J.; Elbadawi, M.; McCoubrey, L.E.; Goyanes, A.; Gaisford, S.; Basit, A.W. Connected healthcare: Improving patient care using digital health technologies. Adv. Drug Deliv. Rev. 2021, 178, 113958. [Google Scholar] [CrossRef] [PubMed]
- Tai, X.Y.; Zhang, H.; Niu, Z.; Christie, S.D.R.; Xuan, J. The future of sustainable chemistry and process: Convergence of artificial intelligence, data and hardware. Energy AI 2020, 2, 100036. [Google Scholar] [CrossRef]
- O’Reilly, C.S.; Elbadawi, M.; Desai, N.; Gaisford, S.; Basit, A.W.; Orlu, M. Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics 2021, 13, 2187. [Google Scholar] [CrossRef]
- D’Aniello, G.; De Falco, M.; Mastrandrea, N. Designing a multi-agent system architecture for managing distributed operations within cloud manufacturing. Evol. Intell. 2021, 14, 2051–2058. [Google Scholar] [CrossRef]
- Dev, N.K.; Shankar, R.; Qaiser, F.H. Industry 4.0 and circular economy: Operational excellence for sustainable reverse supply chain performance. Resour. Conserv. Recycl. 2020, 153, 104583. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, Y.; Ren, S.; Lv, J.; Peng, T.; Waqar, S.; Yin, E. A big data-driven framework for sustainable and smart additive manufacturing. Robot. Comput.-Integr. Manuf. 2021, 67, 102026. [Google Scholar] [CrossRef]
- Caruso, S.; Filice, L. Sustainable manufacturing of ultra-fine aluminium alloy 6101 wires using controlled high levels of mechanical strain and finite element modeling. Int. J. Mater. Form. 2021, 14, 1209–1219. [Google Scholar] [CrossRef]
- Ardanza, A.; Moreno, A.; Segura, Á.; de la Cruz, M.; Aguinaga, D. Sustainable and flexible industrial human machine interfaces to support adaptable applications in the Industry 4.0 paradigm. Int. J. Prod. Res. 2019, 57, 4045–4059. [Google Scholar] [CrossRef]
- Salem, H.; Elksasy, M.S.M. IoE Applications to Fight Against Pandemics: 3D Printing Aiding in Sustainable Technology. ARPN J. Eng. Appl. Sci. 2021, 16, 2492–2507. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126338055&partnerID=40&md5=4e0ed5c23f631cb9782cc922295408c8 (accessed on 6 October 2022).
- Wang, L.; Du, P.; Jin, R. MOSS-multi-modal best subset modeling in smart manufacturing. Sensors 2021, 21, 243. [Google Scholar] [CrossRef] [PubMed]
- Menolotto, M.; Komaris, D.S.; Tedesco, S.; O’flynn, B.; Walsh, M. Motion capture technology in industrial applications: A systematic review. Sensors 2020, 20, 5687. [Google Scholar] [CrossRef]
- Dobrilovic, D.; Brtka, V.; Stojanov, Z.; Jotanovic, G.; Perakovic, D.; Jausevac, G. A model for working environment monitoring in smart manufacturing. Appl. Sci. 2021, 11, 2850. [Google Scholar] [CrossRef]
- Borghetti, M.; Cantù, E.; Sardini, E.; Serpelloni, M. Future sensors for smart objects by printing technologies in Industry 4.0 scenario. Energies 2020, 13, 5916. [Google Scholar] [CrossRef]
- Mardonova, M.; Choi, Y. Toward Open-Source Hardware and Software for the Mining Industry: A Case Study of Low-Cost Environmental Monitoring System for Non-Metallic Underground Mines. Min. Metall. Explor. 2019, 36, 657–674. [Google Scholar] [CrossRef]
- Portalo, J.M.; González, I.; Calderón, A.J. Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution. Sustainability 2021, 13, 8182. [Google Scholar] [CrossRef]
- Izquierdo-Monge, O.; Redondo-Plaza, A.; Peña-Carro, P.; Zorita-Lamadrid, Á.; Alonso-Gómez, V.; Hernández-Callejo, L. Open Source Monitoring and Alarm System for Smart Microgrids Operation and Maintenance Management. Electronics 2023, 12, 2471. [Google Scholar] [CrossRef]
Method | Research Goal | |
---|---|---|
Process Monitoring and Control | Review study | In situ sensing systems [10] |
Computational Fluid Dynamics (CFD)-based simulation | Smart nozzle design [11] | |
Artificial neural network (ANN) | Smart nozzle design [12] | |
Machine learning | Surface defect detection [13] | |
Model-based approach | Process parameter adjustment [14] | |
Process Monitoring and Control | Overview and case study | Digital twin development [15,16] |
Cloud computation | Efficient control system design [18] | |
Production Planning | Systematic literature review (SLR) study | Smart production planning and control (PPC) systems [19] |
System architecture design | IoT-based scheduling systems [20] | |
Artificial Neural Network (ANN) | Automated process design [21] | |
Review | Smart manufacturing and design [22] | |
Simulation-based system design | Personalized production [23] | |
System modeling and development | Remote distributed rapid prototyping [26] | |
Path Planning | Automated data analysis | Inline control system [28] |
Review | General simulation environment [29] | |
Quality Control and Maintenance | Review | Optimization of quality inspections and control [31] |
Deep Learning | Distortion prediction [32] | |
Artificial Intelligence | Error compensation [33] | |
Image processing | Surface quality measurement [34] |
Research Scope | Challenges | |
---|---|---|
Process Monitoring and Control |
|
|
Production Planning |
|
|
Path Planning |
| |
Quality Control and Maintenance |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tartici, I.; Kilic, Z.M.; Bartolo, P. A Systematic Literature Review: Industry 4.0 Based Monitoring and Control Systems in Additive Manufacturing. Machines 2023, 11, 712. https://doi.org/10.3390/machines11070712
Tartici I, Kilic ZM, Bartolo P. A Systematic Literature Review: Industry 4.0 Based Monitoring and Control Systems in Additive Manufacturing. Machines. 2023; 11(7):712. https://doi.org/10.3390/machines11070712
Chicago/Turabian StyleTartici, Idil, Zekai Murat Kilic, and Paulo Bartolo. 2023. "A Systematic Literature Review: Industry 4.0 Based Monitoring and Control Systems in Additive Manufacturing" Machines 11, no. 7: 712. https://doi.org/10.3390/machines11070712
APA StyleTartici, I., Kilic, Z. M., & Bartolo, P. (2023). A Systematic Literature Review: Industry 4.0 Based Monitoring and Control Systems in Additive Manufacturing. Machines, 11(7), 712. https://doi.org/10.3390/machines11070712