Mitigation of Lightning-Induced Transient Effects on a Hybrid Photovoltaic–Wind System Based on Lightning Protection Standards
Abstract
:1. Introduction
2. Methodology and Design
2.1. Modelling of the Hybrid System
2.1.1. PV Farm
2.1.2. ESS
2.1.3. Wind Farm
2.2. Lightning Current
2.3. Lightning Protection
3. Results and Discussion
3.1. Simulation Results of Case 1
3.2. Simulation Results of Case 2
3.3. Simulation Results of Case 3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, P.; Chandramohan, V. A review on recent advances in hybrid solar updraft tower plants: Challenges and future aspects. Sustain. Energy Technol. Assess. 2023, 55, 102978. [Google Scholar] [CrossRef]
- Krishna, K.S.; Kumar, K.S. A review on hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2015, 52, 907–916. [Google Scholar] [CrossRef]
- Tan, J.D.; Chang, C.C.W.; Bhuiyan, M.A.S.; Nisa’Minhad, K.; Ali, K. Advancements of wind energy conversion systems for low-wind urban environments: A review. Energy Rep. 2022, 8, 3406–3414. [Google Scholar] [CrossRef]
- Roga, S.; Bardhan, S.; Kumar, Y.; Dubey, S.K. Recent technology and challenges of wind energy generation: A review. Sustain. Energy Technol. Assess. 2022, 52, 102239. [Google Scholar] [CrossRef]
- Kálecz, G.; Tóth, Z.; Kiss, I.; Németh, B. Theory behind the zone concept for external lightning protection of photovoltaic power plants. Electr. Power Syst. Res. 2022, 209, 108025. [Google Scholar] [CrossRef]
- Nema, P.; Nema, R.; Rangnekar, S. A current and future state of art development of hybrid energy system using wind and pv-solar: A review. Renew. Sustain. Energy Rev. 2009, 13, 2096–2103. [Google Scholar] [CrossRef]
- Bajpai, P.; Dash, V. Hybrid renewable energy systems for power generation in stand-alone applications: A review. Renew. Sustain. Energy Rev. 2012, 16, 2926–2939. [Google Scholar] [CrossRef]
- Worku, M.Y. Recent advances in energy storage systems for renewable source grid integration: A comprehensive review. Sustainability 2022, 14, 5985. [Google Scholar] [CrossRef]
- Nehrir, M.; Wang, C.; Strunz, K.; Aki, H.; Ramakumar, R.; Bing, J.; Miao, Z.; Salameh, Z. A review of hybrid renewable/alternative energy systems for electric power generation: Configurations, control, and applications. IEEE Trans. Sustain. Energy 2011, 2, 392–403. [Google Scholar] [CrossRef]
- Christodoulou, C.A.; Ekonomou, L.; Gonos, I.F.; Papanikolaou, N.P. Lightning protection of pv systems. Energy Syst. 2016, 7, 469–482. [Google Scholar] [CrossRef]
- Sun, Q.; Yang, L.; Zheng, Z.; Han, J.; Wang, Y.; Yao, L. A comprehensive lightning surge analysis in offshore wind farm. Electr. Power Syst. Res. 2022, 211, 108259. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Mohammadirad, A.; Akmal, A.A.S. Surge analysis on wind farm considering lightning strike to multi-blade. Renew. Energy 2022, 186, 312–326. [Google Scholar] [CrossRef]
- Bak, C.L.; Einarsdóttir, K.E.; Andresson, E.; Rasmussen, J.M.; Lykkegaard, J.; Wiechowski, W. Overvoltage protection of large power transformers—A real-life study case. IEEE Trans. Power Deliv. 2008, 23, 657–666. [Google Scholar] [CrossRef]
- Djalel, D.; Abdallah, G.; Hocine, L. Study of the lightning impact on the wind-turbine. Energy Res. J. 2014, 5, 17. [Google Scholar] [CrossRef]
- Hetita, I.; Zalhaf, A.S.; Mansour, D.-E.A.; Han, Y.; Yang, P.; Wang, C. Modeling and protection of photovoltaic systems during lightning strikes: A review. Renew. Energy 2022, 184, 134–148. [Google Scholar] [CrossRef]
- Zaini, N.; Kadir, A.; Abidin, M.Z.; Radzi, M.; Amran, M.; Izadi, M.; Azis, N.; Ahmad, N.I.; Nasir, M.S.M. Lightning surge analysis on a large scale grid-connected solar photovoltaic system. Energies 2017, 10, 2149. [Google Scholar] [CrossRef] [Green Version]
- Said, A.; Abd-Allah, M.; Mohsen, M. Alleviation of the transients induced in large photovoltaic power plants by direct lightning stroke. Ain Shams Eng. J. 2023, 14, 101880. [Google Scholar] [CrossRef]
- Siahpoosh, M.K.; Li, L.; Dorrell, D.G. Wind farm grounding system analysis. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 4780–4785. [Google Scholar]
- Tong, C.; Cai, Y.; Zhang, Z.; Wang, Q.; Gao, Y.; Li, J.; Yu, D. Artificial intelligence-based lightning protection of smart grid distribution system. In Proceedings of the 2017 International Symposium on Lightning Protection (XIV SIPDA), Natal, Brazil, 2–6 October 2017; pp. 279–286. [Google Scholar]
- Pastromas, S.; Pyrgioti, E. Protection Measures on Wind Turbines against Lightning Strikes. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’17), Malaga, Spain, 4–6 April 2017. [Google Scholar]
- Holland, I.; Doorsamy, W.; Nixon, K. Computational methodology for lightning risk assessment of small-scale rooftop photovoltaic systems. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, 2–15 June 2018; pp. 1–6. [Google Scholar]
- Mohamed, F.P.; Siew, W.H.; Mahmud, S. Effect of group grounding on the potential rise across solar PV panels during lightning strike. In Proceedings of the 2019 11th Asia-Pacific International Conference on Lightning (APL), Hong Kong, China, 12–14 June 2019; pp. 1–5. [Google Scholar]
- Rodrigues, R.B.; Mendes, V.M.F.; Catalão, J.P.d.S. Protection of wind energy systems against the indirect effects of lightning. Renew. Energy 2011, 36, 2888–2896. [Google Scholar] [CrossRef]
- Sekioka, S.; Otoguro, H.; Funabashi, T. A study on overvoltages in windfarm caused by direct lightning stroke. IEEE Trans. Power Deliv. 2018, 34, 671–679. [Google Scholar] [CrossRef]
- Sun, Q.; Yang, L.; Li, Q.; Zhang, X.; Wang, F.; Chen, S.; Zhong, L. Surge analysis for lightning strike on overhead lines of wind farm. Electr. Power Syst. Res. 2021, 194, 107066. [Google Scholar] [CrossRef]
- Pastromas, S.A.; Sandros, K.; Koutras, K.N.; Pyrgioti, E.C. Investigation of lightning strike effects on wind turbine critical components. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018; pp. 1–4. [Google Scholar]
- Li, P.; Lv, D.; Li, C.; Yue, X.; Cao, H. Optimized design of wind turbine blade receptors based on electrostatic field theory. Electronics 2019, 8, 1418. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Noda, T.; Yokoyama, S.; Ametani, A. An experimental study of lightning overvoltages in wind turbine generation systems using a reduced-size model. Electr. Eng. Jpn. 2007, 158, 22–30. [Google Scholar] [CrossRef]
- Alipio, R.; Conceição, D.; Dias, R.N.; Visacro, S.; Yamamoto, K. The effect of frequency dependence of soil electrical parameters on the lightning performance of typical wind-turbine grounding systems. In Proceedings of the 2017 international symposium on lightning protection (XIV SIPDA), Natal, Brazil, 2–6 October 2017; pp. 353–358. [Google Scholar]
- Shi, W.; Ren, J.; Yao, J.; Yuan, H.; Li, Q. Research advances and trends of lightning protection for offshore wind turbines. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 497–501. [Google Scholar]
- Wang, Y.; Hu, W. Investigation of the effects of receptors on the lightning strike protection of wind turbine blades. IEEE Trans. Electromagn. Compat. 2017, 59, 1180–1187. [Google Scholar] [CrossRef]
- Tao, S.; Zhang, X.; Wang, Y.; Yang, J. Transient behavior analysis of offshore wind turbines during lightning strike to multi-blade. IEEE Access 2018, 6, 22070–22083. [Google Scholar] [CrossRef]
- Coetzer, K.M.; Rix, A.J.; Wiid, P.G. Impulse generator design to investigate indirect lightning strike effects on utility-scale photovoltaic installations. In Proceedings of the 26th South African Universities Power and Engineering Conference, Johannesburg, South Africa, 24–26 January 2018; pp. 181–185. [Google Scholar]
- Guo, Z.; Li, Q.; Ma, Y.; Ren, H.; Fang, Z.; Chen, C.; Siew, W.H. Experimental study on lightning attachment manner to wind turbine blades with lightning protection system. IEEE Trans. Plasma Sci. 2018, 47, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fang, S.; Wang, G.; Zhao, T.; Zou, L. Studies on an electromagnetic transient model of offshore wind turbines and lightning transient overvoltage considering lightning channel wave impedance. Energies 2017, 10, 1995. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, H.; Du, Y. Lightning protection design of solar photovoltaic systems: Methodology and guidelines. Electr. Power Syst. Res. 2019, 174, 105877. [Google Scholar] [CrossRef]
- IEC-62305-2; Protection against lightning—Part 2: Risk Management. International Electrotechnical Commission (IEC): Milano, Italy, 2014; p. 112.
- Refaat, A.; Kalas, A.; Daoud, A.; Bendary, F. A control methodology of three phase grid connected pv system. Energy 2013, 1, 2. [Google Scholar]
- Kim, R.Y.; Choi, S.Y.; Suh, I.Y. Instantaneous control of average power for grid tie inverter using single phase DQ rotating frame with all pass filter. In Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, Busan, Republic of Korea, 2–6 November 2004; Volume 1, pp. 274–279. [Google Scholar]
- Abdalrahman, A.; Zekry, A.; Alshazly, A. Simulation and implementation of grid-connected inverters. Int. J. Comput. Appl. 2012, 60, 41–49. [Google Scholar] [CrossRef]
- Zhang, W.; Remon, D.; Cantarellas, A.M.; Rodriguez, P. A unified current loop tuning approach for grid-connected photovoltaic inverters. Energies 2016, 9, 723. [Google Scholar] [CrossRef] [Green Version]
- Muljadi, E.; Singh, M.; Gevorgian, V. User Guide for Pv Dynamic Model Simulation Written on Pscad Platform; National Renewable Energy Laboratory: Golden, CO, USA, 2014. [Google Scholar]
- Kaldellis, J.K. Stand-Alone and Hybrid Wind Energy Systems: Technology, Energy Storage and Applications; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- CENELEC. Low-Voltage Surge Protective Devices; European Committee for Electrotechnical Standardization (CENELEC): Brussels, Belgium, 2013; Volume CLC/TS 50539-12, p. 34. [Google Scholar]
- Woodworth, J.; Limburg, D. Arrester v–i Characteristics Tool. Available online: http://www.arresterworks.com/arresterfacts/Arresterfacts_Arrester_Modeling.php (accessed on 2 May 2018).
- Ahmad, N.; Ab-Kadir, M.; Izadi, M.; Azis, N.; Radzi, M.; Zaini, N.; Nasir, M. Lightning protection on photovoltaic systems: A review on current and recommended practices. Renew. Sustain. Energy Rev. 2018, 82, 1611–1619. [Google Scholar] [CrossRef]
- Stuckenholz, C.H.; Gamlin, M. Overview of impulse current test standards and the impact on test equipment. In Proceedings of the 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria, 2–7 September 2012; pp. 1–6. [Google Scholar]
- Quyen, H.A.; Le, Q.T. Selection guide for low voltage surge protector. Int. J. Eng. Res. Technol. (IJERT) 2017, 6, 23–27. [Google Scholar]
- Lira, G.R.S.; Fernandes, D., Jr.; Costa, E.G. Computation of energy absorption and residual voltage in metal oxide surge arrester from digital models and lab tests: A comparative study. In Proceedings of the International Conference on Power Systems Transients (IPST’07), Lyon, France, 4–7 June 2007. [Google Scholar]
System Quantities | Value |
---|---|
Series-connected modules | 22 |
Parallel-connected modules | 215 |
Solar irradiation | 1000 W/m2 |
Temperature | 25 °C |
DC bus | 0.78 kV |
System Quantities | Values |
---|---|
Wind speed (υ) | 12 m/s |
Air density ( corresponds to 0 °C | 1.23 kg/m3 |
Rotor radius (r) | 40 m |
Gear ratio | 38 |
Gearbox efficiency | 0.97 pu |
Rated speed of the machine | 314 rad/s |
Power coefficient (Cp) | 0.4 |
Initial pitch angle (β) | 0 |
Turbine rated power (P) | 2.1 MVA |
Pole pairs | 3 |
System Quantities | Values |
---|---|
Rated power | 2.1 MVA |
Rated voltage | 0.690 kV |
Mechanical speed | 1500 rpm |
Stator/rotor turns ratio | 0.3 |
Stator resistance | 0.0054 pu |
Rotor resistance | 0.00607 pu |
Magnetising inductance | 4.5 pu |
Stator leakage inductance | 0.10 pu |
Rotor leakage inductance | 0.11 pu |
WT transformer | 100 MVA, 0.690/33 kV |
Lightning Current | |||||
---|---|---|---|---|---|
1/10 µs | 50, 100 | 0.206 | 12.27 | 0.8842 | 10 |
8/20 µs | 10 | 5.8 | 11.6 | 0.32887 | 10 |
10/350 µs | 50, 100 | 1 | 483.6 | 0.9697 | 10 |
SPD Location | L-L Voltage (kV) | Recommended MCOV (kV) | SPDs Protection Level (kV) |
---|---|---|---|
1 | 0.78 | 0.81 | 4 |
2, 3, 4 | 0.48 | 0.52 | 2.5 |
5, 6, 7 | 33 | 28 | 130 |
Surge Arrester | Number of Column (n) | Rated Voltage (kV) | Residual Voltage (kV) | ||
---|---|---|---|---|---|
Experimental | PSCAD | Error (%) | |||
Arrester 1 | 1 | 7.5 | 21.557 | 21.997 | 2.00 |
Arrester 2 | 1 | 7.5 | 20.908 | 20.711 | 0.93 |
Arrester 3 | 1 | 4.0 | 13.102 | 13.000 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abda, Z.M.K.; Ab Kadir, M.Z.A.; Hizam, H.; Gomes, C. Mitigation of Lightning-Induced Transient Effects on a Hybrid Photovoltaic–Wind System Based on Lightning Protection Standards. Machines 2023, 11, 707. https://doi.org/10.3390/machines11070707
Abda ZMK, Ab Kadir MZA, Hizam H, Gomes C. Mitigation of Lightning-Induced Transient Effects on a Hybrid Photovoltaic–Wind System Based on Lightning Protection Standards. Machines. 2023; 11(7):707. https://doi.org/10.3390/machines11070707
Chicago/Turabian StyleAbda, Zmnako Mohammed Khurshid, Mohd Zainal Abidin Ab Kadir, Hashim Hizam, and Chandima Gomes. 2023. "Mitigation of Lightning-Induced Transient Effects on a Hybrid Photovoltaic–Wind System Based on Lightning Protection Standards" Machines 11, no. 7: 707. https://doi.org/10.3390/machines11070707
APA StyleAbda, Z. M. K., Ab Kadir, M. Z. A., Hizam, H., & Gomes, C. (2023). Mitigation of Lightning-Induced Transient Effects on a Hybrid Photovoltaic–Wind System Based on Lightning Protection Standards. Machines, 11(7), 707. https://doi.org/10.3390/machines11070707