An Improved Unit Quaternion for Attitude Alignment and Inverse Kinematic Solution of the Robot Arm Wrist
Abstract
:1. Introduction
2. The Kinematic and Mathematical Framework
2.1. The Kinematics Modeling of Robot Arm
2.2. Wrist Types and Structures
2.3. The Transformations of the Kinematics Body
2.3.1. Rotation Matrix
2.3.2. Euler Angles
2.3.3. Unit Quaternion
- Unit quaternions require more arithmetic and are less intuitive than Euler angles and Exponential matrices.
- Compared to homogeneous transformation matrices and dual quaternion, the unit quaternions have a rotation and no translation.
- Unit quaternions have four parameters, but compact rotation representation can only use three.
- Obtaining IK solutions with optimal equations using pure quaternion is difficult.
3. Quaternion and Kinematic Analysis
3.1. New Analytical Quaternion
3.2. Canonical Formula of Ju-Gibbs Quaternion
3.3. Attitude Alignment for 6-DOF Robot Arm Based on Ju-Gibbs Quaternion
4. Kinematic Analysis Based on Ju-Gibbs Quaternion
4.1. Orientation Alignment of the Robot Arm Wrist
4.2. Direction IKs Solution Based on Ju-Gibbs Quaternion
5. Applications of Ju-Gibbs Quaternion and Experiments
5.1. Orientation Solution
- i
- Converting the given orientation (i.e., Homogenous matrix, rotation matrix, sin/cos unit quaternions) to a new tangent quaternion (Ju-Gibbs) and unifying the variables from sin/cos to tan half angles.
- ii
- Separate between the position and orientation quaternions variables.
- iii
- Calculate the inverse position quaternion and position modulus from given position joint variables Equation (25).
- iv
- Obtain the desired wrist attitudes from orientation quaternion obtained from
- (a)
- Theorem 1.
- (b)
- Steps (ii and iii) above.
- v
5.1.1. Solution for General Robot Arm with n-DOF
Algorithm 1: Orientation alignment for n-DOF robot arm wrist |
5.1.2. Fast IK Solution of Based on Ju-Gibbs Quaternion
Algorithm 2: Direction Inverse kinematic solution for n-DOF robot arm Wrist |
5.2. Numerical Experiments and Simulation
5.2.1. Direction IK
5.2.2. Orientation IK for 6-DOF Robot-Wrist
5.2.3. Orientation IK for Redundant Robot Arm (Human Wrist)
5.2.4. IK Simulation Experiment of 7-DOF
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | Definition | Symbols | Definition |
Axis-Vector represents the connection from link to link l respectively | Ju-Gibbs quaternion | ||
Skew- symmetric matrix of axis vector () | Skew-symmetric matrix of quaternion vector part | ||
Sine half-angle | Ju-Gibbs quaternion modulus square | ||
Cosine half-angle | Scalar part of unit quaternion | ||
Tangent half-angle | Scalar part of Ju-Gibbs quaternion | ||
Angular position around Axis-vector | Axis-vector on the projection of link from the right to the left coordinate system | ||
The kinematic joint pair | Aligns to the desired Axis-vector | ||
Rotation matrix from frame 0 to frame l | 3D zero matrix | ||
Unit Quaternion | 1 | 3D unit matrix |
Abbreviations
MAS | Multi Axis System |
KC | Kinematic Chain |
IK | Inverse Kinematic |
EF | End Effector |
Appendix A
Appendix A.1
Appendix A.2. Ju-Gibbs Quaternion in Canonical Formula
Appendix A.3. Proof of the Theorem 1
Appendix A.4. Comparative of the Numerical Experiments between Quaternions
Appendix A.5. The Continuous of the Theorem 2 Proof
References
- Haslwanter, T. 3D Kinematics; Springer: Cham, Switzerland, 2018; 191p. [Google Scholar] [CrossRef]
- Funda, J.; Paul, R. A computational analysis of screw transformations in robotics. IEEE Trans. Robot. 1990, 6, 348–356. [Google Scholar] [CrossRef]
- Murray, R.; Li, Z.; Sastry, S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 1994; p. 519. [Google Scholar] [CrossRef] [Green Version]
- Crowe, M.J. A History of Vector Analysis: The Evolution of the Idea of a Vectorial System; Courier Corporation: North Chelmsford, MA, USA, 1994. [Google Scholar]
- Bisshopp, K.E. Rodrigues’ Formula and the Screw Matrix. ASME J. Eng. Ind. 1969, 91, 179–184. [Google Scholar] [CrossRef]
- Hamilton, W. Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method. Available online: https://l1nq.com/ClrIR (accessed on 30 March 2023).
- Clifford, M.A. Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. 1871, 4, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Kotelnikov, A. Screw calculus and some applications to geometry and mechanics. Ann. Imp. Univ. Kazan 1895, 24. [Google Scholar]
- Cohen, A.; Shoham, M. Hyper Dual Quaternions representation of rigid bodies kinematics. Mech. Mach. Theory 2020, 150, 103861. [Google Scholar] [CrossRef]
- Kahveci, D.; Gok, I.; Yayl, Y. Some variations of dual Euler–Rodrigues formula with an application to point–line geometry. J. Math. Anal. Appl. 2018, 459, 1029–1039. [Google Scholar] [CrossRef]
- Lee, C.C.; Stammers, C.; Mullineux, G. On the historical overview of geometric algebra for kinematics of mechanisms. In International Symposium on History of Machines and Mechanisms; Springer: Cham, Switzerland, 2009; pp. 21–34. [Google Scholar] [CrossRef]
- Muller, A. Screw and Lie group theory in multibody kinematics. Multibody Syst. Dyn. 2018, 43, 37–70. [Google Scholar] [CrossRef] [Green Version]
- Brockett, R. Robotic manipulators and the product of exponentials formula. In Mathematical Theory of Networks and Systems; Springer: Berlin/Heidelberg, Germany, 1984; pp. 120–129. [Google Scholar] [CrossRef]
- Norris, A. Euler-Rodrigues and Cayley formulae for rotation of elasticity tensors. Math. Mech. Solids 2008, 13, 465–498. [Google Scholar] [CrossRef] [Green Version]
- Kruglov, S.I.; Barzda, V. Modified Gibbs’s representation of rotation matrix. arXiv 2017, arXiv:1703.00300. [Google Scholar]
- Dai, J. Euler–Rodrigues formula variations, quaternion conjugation and intrinsic connections. Mech. Mach. Theory 2015, 92, 144–152. [Google Scholar] [CrossRef]
- Angeles, J. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Brandstotter, M.; Angerer, A.; Hofbaur, M. An analytical solution of the inverse kinematics problem of industrial serial manipulators with an ortho-parallel basis and a spherical wrist. In Proceedings of the Austrian Robotics Workshop, Linz, Austria, 22–23 May 2014; p. 7. [Google Scholar]
- Li, Q.; Ju, H.; Xiao, P. Kinematics analysis and optimization of 6R manipulator. IOP Conf. Ser. Mater. Sci. Eng. 2020, 816, 012016. [Google Scholar] [CrossRef]
- Zhao, R.; Shi, Z.; Guan, Y.; Shao, Z.; Zhang, Q.; Wang, G. Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem. Int. J. Adv. Robot. Syst. 2018, 15, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Li, G.; Jiang, D.; Xie, Y.; Yun, J.; Liu, Y.; Huang, L.; Fang, Z. An effective and unified method to derive the inverse kinematics formulas of general six-DOF manipulator with simple geometry. Mech. Mach. Theory 2021, 159, 104265. [Google Scholar] [CrossRef]
- Faria, C.; Ferreira, F.; Erlhagen, W.; Monteiro, S.; Bicho, E. Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance. Mech. Mach. Theory 2018, 121, 317–334. [Google Scholar] [CrossRef] [Green Version]
- Kucuk, S.; Bingul, Z. Inverse kinematics solutions for industrial robot manipulators with offset wrists. Appl. Math. Model. 2014, 38, 1983–1999. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, W.; Yang, Z. Solution of inverse kinematics for 6R robot manipulators with offset wrist based on geometric algebra. J. Mech. Robot. 2013, 5, 031010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, C.; Zlatanov, D.; Zoppi, M.; Molfino, R. A geometrical approach to the inverse kinematics of 6R serial robots with offset wrists. In Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015. [Google Scholar] [CrossRef]
- An, H.; Seo, T.; Lee, J. Generalized solution for a sub-problem of inverse kinematics based on product of exponential formula. J. Mech. Sci. Technol. 2018, 32, 2299–2307. [Google Scholar] [CrossRef]
- Lin, P.F.; Huang, M.B.; Huang, H.P. Analytical solution for inverse kinematics using dual quaternions. IEEE Access 2019, 7, 166190–166202. [Google Scholar] [CrossRef]
- Shirafuji, S.; Ota, J. Kinematic synthesis of a serial robotic manipulator by using generalized differential inverse kinematics. IEEE Trans. Robot. 2019, 35, 1047–1054. [Google Scholar] [CrossRef]
- Ahmed, A.; Yu, M.; Chen, F. Inverse Kinematic Solution of 6-DOF Robot-Arm Based on Dual Quaternions and Axis Invariant Methods. Arab. J. Sci. Eng. 2022, 47, 15915–15930. [Google Scholar] [CrossRef]
- Wahballa, H.; Duan, J.; Wang, W.; Dai, Z. Experimental Study of Robotic Polishing Process for Complex Violin Surface. Machines 2023, 11, 147. [Google Scholar] [CrossRef]
- Trawny, N.; Roumeliotis, S. Indirect Kalman filter for 3D attitude estimation. Univ. Minn. Dept. Comp. Sci. Eng. Tech. Rep. 2005, 2, 2005. [Google Scholar]
- Aspragathos, N.; Dimitros, J. A comparative study of three methods for robot kinematics. IEEE Syst. J. Man Cybern. Part B 1998, 28, 135–145. [Google Scholar] [CrossRef]
- Craig, J. Introduction to robotics: Mechanics and control. Pearson Educ. 2005, 388. [Google Scholar]
- Ju, H. An Axis-Invariant Based Inverse Kinematics Modeling and Solution Method for General 7R Manipulators. China Patent CN109033688B, 31 March 2020. [Google Scholar]
- Bajaj, N.; Spiers, A.; Dollar, A. State of the art in artificial wrists: A review of prosthetic and robotic wrist design. IEEE Trans. Robot. 2019, 35, 261–277. [Google Scholar] [CrossRef]
- Ayiz, C.; Kucuk, S. The kinematics of industrial robot manipulators based on the exponential rotational matrices. In Proceedings of the 2009 IEEE International Symposium on Industrial Electronics, Seoul, Republic of Korea, 5–8 July 2009; pp. 977–982. [Google Scholar] [CrossRef]
- Raghavan, M.; Roth, B. Inverse Kinematics of the General 6R Manipulator and Related Linkages. J. Mech. Des. 1993, 115, 502–508. [Google Scholar] [CrossRef]
Operation | Definition |
---|---|
Scalar Multiplication | |
Magnitude | |
Modulus square | |
Conjugate and inverse | |
Unit quaternion | |
Direction quaternion | |
Multiplication |
Methods | Number of Parameters | Addition and Subtract | Multiplication and Division | Kinematics Position | Description Orientation | Singularity |
---|---|---|---|---|---|---|
Rotation Matrix | 9 | 18 | 27 | × | ✓ | Medium |
Unit Quaternion | 4 | 12 | 16 | × | ✓ | Robust |
Euler Angles | 3 | - | - | × | ✓ | Weak |
Homogenous Matrix | 16 | 48 | 64 | ✓ | ✓ | Medium |
Dual Quaternion | 7 | 38 | 48 | ✓ | ✓ | Robust |
Robot-Arm | Axis | Projection Axis | Desired Attitude Quaternion |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 |
Robot-Arm | Axis | Projection Axis | Desired Attitude of Axis | IK Solutions | |||
---|---|---|---|---|---|---|---|
1 | 0 | 90 | |||||
2 | 0 | ||||||
3 | 0 | ||||||
4 | |||||||
5 | 0 | 0 |
Axis No | 1 | 2 | 3 | 4 | 5 | 6 | ||
---|---|---|---|---|---|---|---|---|
Given Angle (Position Angles) | Desired Quaternion | IK Solutions | Time (s) | |||||
Poses | t | |||||||
1 | −57.07506 | 13.25053 | −89.91482 | 92.289797 | 103.41217 | 35.47512 | ||
−57.07506 | −61.829779 | 89.91481 | −12.459523 | 103.41217 | 35.47512 | |||
2 | −57.07506 | −11.0 | 22.0 | −135.91372 | −103.41217 | 144.5249 | ||
−57.07506 | −24.71904 | 28.130335 | −167.78578 | −103.41217 | 144.5249 | |||
3 | 60.0 | 30.0 | −50.0 | 150.0 | 20.03 | −100.003 | ||
60.0 | −13.041867 | 50.0 | 93.041867 | 20.07 | −100.006 | |||
4 | 60.00 | 60.08952 | −76.07943 | −34.01009 | −20.0 | 80.0 | ||
60.0 | −4.3410046 | 76.079430 | −121.73843 | −20.01 | 80.001 |
Human Arm Kinematic | Shoulder | Elbow | Wrist | ||||
---|---|---|---|---|---|---|---|
Axis No | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
joints | |||||||
Range of joint angle () | (180; 60) | (150; 50) | (90; 90) | (150; 10) | (85; 76) | (75; 75) | (45; 20) |
Movement Description | Flexion Extension | Abduction EAdduction | Lateral medial | Flexion Extension | Supination Pronation | Flexion Extension | Radial Ulnar |
Arm Poses | Position AnglesShoulder & Elbow | Desired Quaternion | Desired Attitude of Wrist | IK Solutions | Human-Wrist Ranges | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | −19.97 | 0 | Radial & Deviation | |||||||
2 | 44.9987 | 0 | Ulnar & deviation | |||||||
3 | 10 | 20 | 30 | 0 | 0 | 0 | Flexion & Extension | |||
4 | −18 | −55 | Radial & Flexion | |||||||
5 | 28 | 45 | Ulnar & Extension |
Method | No of Parameters | Wrist IK Solution Time Cost | ||
---|---|---|---|---|
6-DOF | 7-DOF | |||
Rotation matrix () | 9 | 1.013 s | 2.035 | |
Unit quaternion () | 4 | 0.215 s | 0.827 s | |
Ju-quaternion () | 3 | 0.019 s | 0.022 s |
Statistical Analysis | Min | Max | Mean | Std |
---|---|---|---|---|
0 | ||||
0 | ||||
Orientation | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; Ju, H.; Yang, Y.; Xu, H. An Improved Unit Quaternion for Attitude Alignment and Inverse Kinematic Solution of the Robot Arm Wrist. Machines 2023, 11, 669. https://doi.org/10.3390/machines11070669
Ahmed A, Ju H, Yang Y, Xu H. An Improved Unit Quaternion for Attitude Alignment and Inverse Kinematic Solution of the Robot Arm Wrist. Machines. 2023; 11(7):669. https://doi.org/10.3390/machines11070669
Chicago/Turabian StyleAhmed, Abubaker, Hehua Ju, Yang Yang, and Hao Xu. 2023. "An Improved Unit Quaternion for Attitude Alignment and Inverse Kinematic Solution of the Robot Arm Wrist" Machines 11, no. 7: 669. https://doi.org/10.3390/machines11070669
APA StyleAhmed, A., Ju, H., Yang, Y., & Xu, H. (2023). An Improved Unit Quaternion for Attitude Alignment and Inverse Kinematic Solution of the Robot Arm Wrist. Machines, 11(7), 669. https://doi.org/10.3390/machines11070669