Vehicle Power System Modeling and Integration in Hardware-in-the-Loop (HIL) Simulations
Abstract
:1. Introduction
2. Literature Review
3. Modeling and Simulation of the Lundell Alternator
3.1. Alternator Model in qd Coordinates
3.2. Quasi-Static Model
4. Experiment Setup and Results
5. Case Studies
5.1. Case I
5.2. Case II
5.3. Case III
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Global EV Outlook 2022. Available online: https://www.iea.org/reports/global-ev-outlook-2022 (accessed on 1 October 2022).
- Osorio, J.D.; Rivera-Alvarez, A. Efficiency enhancement of spark-ignition engines using a continuous variable valve timing system for load control. Energy 2018, 10, 649–662. [Google Scholar] [CrossRef]
- ANFAVEA. Associação Nacional dos Fabricantes de Veículos Automotores. Cenários e Desafios do Brasil no Caminho da Descarbonização do Setor Automotivo; ANFAVEA: São Paulo, Brazil, 2021. [Google Scholar]
- Brown, S.; Pyke, D.; Steenhof, P. Electric vehicles: The role and importance of standards in an emerging market. Energy Policy 2010, 38, 3797–3806. [Google Scholar] [CrossRef]
- Masiero, G.; Ogasavara, M.H.; Jussani, A.C.; Risso, M.L. The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases. Renew. Sustain. Energy Rev. 2017, 80, 290–296. [Google Scholar] [CrossRef]
- McKinsey. Boost! Transforming the Powertrain Value Chain—A Portfolio Challenge; McKinsey & Company, Inc.: Berlin, Germany, 2011. [Google Scholar]
- OICA-Organisation Internationale des Constructeurs D′Automobiles. Sales Statistics. Available online: http://www.oica.net/category/sales-statistics/ (accessed on 25 October 2022).
- Marx, R.; Mello, A. New initiatives, trends and dilemmas for the Brazilian automotive industry: The case of Inovar Auto and its impacts on electromobility in Brazil. Int. J. Automot. Technol. Manag. 2014, 14, 138–157. [Google Scholar] [CrossRef]
- Amatucci, M.; Spers, E.E. The Brazilian biofuel alternative. Int. J. Automot. Technol. Manag. 2014, 10, 37–55. [Google Scholar] [CrossRef]
- Ibusuki, U.; Kobayashi, H.; Kaminski, P.C. Localisation of product development based on competitive advantage of location and government policies: A case study of car makers in Brazil. Int. J. Automot. Technol. Manag. 2012, 12, 172–196. [Google Scholar] [CrossRef]
- Bradfield, M. Improving Alternator Efficiency Measurably Reduces Fuel Costs 1–3; Remy International Inc.: Pendleton, IN, USA, 2016. [Google Scholar]
- Vu-Ngoc, L.; Nguy, B.-H.; Vo-Duy, T.; Ta, M.C.; Trovão, J.P.F. Power Hardware-in-the-loop Simulation of Hybrid Energy Storage System Considering Supercapacitor Voltage Limitation. In Proceedings of the 2022 IEEE Vehicle Power and Propulsion Conference (VPPC), Merced, CA, USA, 1–4 November 2022; pp. 1–6. [Google Scholar]
- Mayyas, A.R.O.; Kumar, S.; Pisu, P.; Rios, J.; Jethani, P. Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach. Appl. Energy 2017, 204, 287–302. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, G. Modeling and hardware-in-the-loop system realization of electric machine drives—A review. CES Trans. Electr. Mach. Syst 2021, 5, 194–201. [Google Scholar] [CrossRef]
- Hung, Y.-H.; Wu, C.-H.; Lo, S.-M.; Chen, B.-R.; Wu, E.-I.; Chen, P.-Y. Development of a hardware in-the-loop platform for plug-in hybrid electric vehicles. In Proceedings of the 2010 International Symposium on Computer, Communication, Control and Automation (3CA), Tainan, Taiwan, 5–7 May 2010; pp. 45–48. [Google Scholar]
- Zhang, J.; Lv, X.; Lv, Y. Research on Vehicle Control Strategy and Hardware in Loop for Pure Electric FSAE Vehicle. J. Phys. Conf. Ser. 2021, 1732, 012172. [Google Scholar] [CrossRef]
- Salisa, A.R.; Norbakyah, J.S.; Atiq, W.H. A Conceptual Design of Main Components Sizing for PHERB Powertrain. J. Teknol. 2015, 76, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Patil, R.M. Combined Design and Control Optimization: Application to Optimal PHEV Design and Control for Multiple Objectives. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 2012. [Google Scholar]
- Tsai, M.-T.; Tseng, C.-S.; Bai, S.-Y. Phase-Variable Modeling and Comparative Study between a PMa-CPA and a CPA Alternator by Simulation Analysis. J. Phys. Conf. Ser. 2022, 2179, 012014. [Google Scholar] [CrossRef]
- Hagstedt, D.; Reinap, A.; Ottosson, J.; Alakula, M. Design and experimental evaluation of a compact hybrid excitation claw-pole rotor. In Proceedings of the 13th International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 2896–2901. [Google Scholar]
- Ye, C.; Liang, X.; Xiong, F.; Yang, J.; Xu, W.; Liu, Y. Design of an Axial-Flux PM-Assisted Claw-Pole Generator Based on an Equivalent Magnetic Circuit Model. IEEE Trans. Energy Convers. 2018, 33, 2040–2049. [Google Scholar] [CrossRef]
- Tsai, M.-F.; Tseng, C.-S.; Cheng, P.-J. Implementation of an FPGA-Based Current Control and SVPWM ASIC with Asymmetric Five-Segment Switching Scheme for AC Motor Drives. Energies 2021, 14, 1462. [Google Scholar] [CrossRef]
- Sarlioglu, B.; Morris, C.T.; Han, D.; Li, S. Benchmarking of electric and hybrid vehicle electric machines, power electronics, and batteries. In Proceedings of the 2015 International Aegean Conference on Electrical Machines Power Electronics, Side, Turkey, 2–4 September 2015. [Google Scholar]
- Yang, Y.; Hu, X.; Pei, H.; Peng, Z. Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach. Appl. Energy 2016, 168, 683–690. [Google Scholar] [CrossRef]
- Mushenya, J.; Khan, A. Performance Analysis and Mechanical Assembly Considerations for a Spoke-Type Permanent Magnet Vernier Machine with an Inner Salient Pole Core on the Rotor. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022; pp. 1–8. [Google Scholar]
- Bosch, R. Bosch Automotive Electrics and Automotive Electronics; Society of Automotive Engineers: Warrendale, PA, USA; Springer Vieweg: Berlin, Germany, 2007; Volume 5, ISBN 978-3-658-01783-5. [Google Scholar]
- Krause, P.C. Analysis of Electric Machinery and Drive Systems, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2002; ISBN 0-471-114326. [Google Scholar]
- Emadi, A.; Ehsani, M.; Miller, J.M. Vehicular Electric Power Systems; Marcel Dekker, Inc.: New York, NY, USA, 2004; ISBN 0-8247-4751-8. [Google Scholar]
- Liang, J.; Parsapour, A.; Cosoroaba, E.; Wu, M.; Boldea, I.; Fahimi, B. A High Torque Density Outer Rotor Claw Pole Stator Permanent Magnet Synchronous Motor. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018; pp. 389–393. [Google Scholar]
- Boldea, I.; Tutelea, L.N.; Popa, A.A. Claw Pole Synchronous Motors/Generators (CP-SMs/Gs) Design and Control: Recent Progress. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 4556–4564. [Google Scholar] [CrossRef]
- Chiniforoosh, S.; Davoudi, A.; Alaeinovin, P.; Jatskevich, J. Dynamic modelling and characterisation of vehicular power system considering alternator iron core and rectifier losses. IET Digit. Libr. 2012, 2, 58–67. [Google Scholar] [CrossRef]
- Tara, E.; Filizadeh, S.; Jatskevich, J.; Dirks, E.; Davoudi, A.; Saeedifard, M.; Strunz, K.; Sood, V.K. Dynamic average-value modeling of hybrid-electric. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; p. 1. [Google Scholar]
- Ramesohl, I.; Henneberger, G.; Kuppers, S.; Hadrys, W. Three dimensional calculation of magnetic forces and displacements of a claw-pole generator. IEEE Trans. Power Deliv. 1996, 32, 1685–1688. [Google Scholar] [CrossRef]
- Barz, C.; Oprea, C. Contributions to the tridimensional analysis of electromagnetic field in claw-poles alternator. J. Electr. Electron. Eng. 2010, 37, 29–34. [Google Scholar]
- Hecquet, M.; Brochet, P. Modeling of a claw-pole alternator using permeance network coupled with electric circuits. IEEE Trans. Magn. 1995, 31, 2131–2134. [Google Scholar] [CrossRef]
- Bai, H.; Pekarek, S.; Tichenor, J.; Eversman, W.; Buening, D.; Holbrook, G.; Hull, M.; Krefta, R.; Shields, S. Analytical derivation of a coupled-circuit model of a claw-pole alternator with concentrated stator winding. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting, Conference Proceedings (Cat. No.02CH37309), New York, NY, USA, 27–31 January 2002; Volume 2, p. 1236. [Google Scholar]
- Sarafianos, D.; McMahon, R.A.; Flack, T.J.; Pickering, S.; Dimitrios, S. Characterisation and modelling of automotive Lundell alternators. In Proceedings of the 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, NSW, Australia, 9–12 June 2015; pp. 928–933. [Google Scholar] [CrossRef]
- Soeiro, L.G.G.; Filho, B.J.C.; Sales, L.C.M. Comparison of Two Alternators Models for a Vehicle Electric Power Balance Simulation. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; pp. 2640–2645. [Google Scholar] [CrossRef]
- Schiferl, R.F.; Ong, C.M. Six phase synchronous machine with ac and dc stator connections, part i: Equivalent circuit representation and steady-state analysis. IEEE Trans. Power Appar. Syst. 1983, PAS-102, 2685–2693. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soeiro, L.G.G.; Filho, B.J.C. Vehicle Power System Modeling and Integration in Hardware-in-the-Loop (HIL) Simulations. Machines 2023, 11, 605. https://doi.org/10.3390/machines11060605
Soeiro LGG, Filho BJC. Vehicle Power System Modeling and Integration in Hardware-in-the-Loop (HIL) Simulations. Machines. 2023; 11(6):605. https://doi.org/10.3390/machines11060605
Chicago/Turabian StyleSoeiro, Luiz Gustavo G., and Braz J. Cardoso Filho. 2023. "Vehicle Power System Modeling and Integration in Hardware-in-the-Loop (HIL) Simulations" Machines 11, no. 6: 605. https://doi.org/10.3390/machines11060605
APA StyleSoeiro, L. G. G., & Filho, B. J. C. (2023). Vehicle Power System Modeling and Integration in Hardware-in-the-Loop (HIL) Simulations. Machines, 11(6), 605. https://doi.org/10.3390/machines11060605