Data Science for Industry 4.0 and Sustainability: A Survey and Analysis Based on Open Data
Abstract
:1. Introduction
2. Literature Review
2.1. Data Science and Open Data
2.2. Open Data for Industry 4.0
2.3. Sustainability in Industry 4.0
3. Research Methodology
4. Data Analysis, Results and Discussion
4.1. Open Data for Industry 4.0
4.1.1. Manufacturing Value Added to GDP
4.1.2. Smart Cities
4.1.3. R&D Efforts for Innovation
4.2. Open Data for Sustainability
4.2.1. Skills Migration
4.2.2. Openness and Happiness
4.3. Relating the Open Data for Industry 4.0 and the Open Data for Sustainability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grybauskas, A.; Stefanini, A.; Ghobakhloo, M. Social Sustainability in The Age of Digitalization: A Systematic Literature Review on The Social Implications of Industry 4.0. Technol. Soc. 2022, 70, 101997. [Google Scholar] [CrossRef]
- Sindhwani, R.; Afridi, S.; Kumar, A.; Banaitis, A.; Luthra, S.; Singh, P.L. Can Industry 5.0 Revolutionize the Wave of Resilience and Social Value Creation? A Multi-Criteria Framework to Analyze Enablers. Technol. Soc. 2022, 68, 101887. [Google Scholar] [CrossRef]
- Putnik, G.D.; Ávila, P.S. Manufacturing System and Enterprise Management for Industry 4.0: Guest Editorial. FME Trans. 2021, 49, 769–772. [Google Scholar] [CrossRef]
- Klingenberg, C.O.; Borges, M.A.V.; Antunes, J.A.V., Jr. Industry 4.0 as a Data-Driven Paradigm: A Systematic Literature Review on Technologies. J. Manuf. Technol. Manag. 2019, 29, 910–936. [Google Scholar] [CrossRef]
- Boehmke, B.; Hazen, B.; Boone, C.A.; Robinson, J.L. A Data Science and Open Source Software Approach to Analytics for Strategic Sourcing. Int. J. Inf. Manag. 2020, 54, 102167. [Google Scholar] [CrossRef]
- Moeuf, A.; Pellerin, R.; Lamouri, S.; Tamayo, S.; Barbaray, R. The Industrial Management of Smes in the Era of Industry 4.0. Int. J. Prod. Res. 2017, 56, 1118–1136. [Google Scholar] [CrossRef] [Green Version]
- Ingaldi, M.; Ulewicz, R. Problems with the Implementation of Industry 4.0 in Enterprises from the SME Sector. Sustainability 2020, 12, 217. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, J.; Foropon, C. Big Data Analytics in Building the Competitive Intelligence of Organizations. Int. J. Inf. Manag. 2020, 56, 102231. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big Data Analytics Capabilities and Innovation: The Mediating Role of Dynamic Capabilities and Moderating Effect of the Environment. Br. J. Manag. 2018, 30, 272–298. [Google Scholar] [CrossRef]
- Provost, F.; Fawcett, T. Data Science and its Relationship to Big Data and Data-Driven Decision Making. Big Data 2013, 1, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the Construction Industry: A Review of Present Status, Opportunities, and Future Trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Saritha, B.; Bonagiri, R.; Deepika, R. Open Source Technologies in Data Science and Big Data Analytics. Mater. Today Proc. 2021, withdrawn. [Google Scholar] [CrossRef]
- Runeson, P.; Olsson, T.; Linåker, J. Open Data Ecosystems—An Empirical Investigation into an Emerging Industry Collaboration Concept. J. Syst. Softw. 2021, 182, 111088. [Google Scholar] [CrossRef]
- Gandomi, A.; Haider, M. Beyond the Hype: Big Data Concepts, Methods, and Analytics. Int. J. Inf. Manag. 2015, 35, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Runeson, P. Open Collaborative Data—Using OSS Principles to Share Data in SW Engineering. In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), Montreal, QC, Canada, 25–31 May 2019; pp. 25–28. [Google Scholar] [CrossRef] [Green Version]
- Hickin, R.; Bechtel, M.; Golem, A.; Erb, L.; Buscalno, R. Technology Futures: Projecting the Possible, Navigating What’s Next. April 2021. Available online: https://www3.weforum.org/docs/WEF_Technology_Futures_GTGS_2021.pdf (accessed on 26 December 2022).
- Hall, T. The Role of Data in Industry 4.0. 20 May 2020. Available online: https://industrytoday.com/the-role-of-data-in-industry-4-0/ (accessed on 16 December 2022).
- Cammarano, A.; Varriale, V.; Michelino, F.; Caputo, M. Open and Crowd-Based Platforms: Impact on Organizational and Market Performance. Sustainability 2022, 14, 2223. [Google Scholar] [CrossRef]
- Czvetkó, T.; Honti, G.; Abonyi, J. Regional Development Potentials of Industry 4.0: Open Data Indicators of the Industry 4.0+ Model. PLoS ONE 2021, 16, e0250247. [Google Scholar] [CrossRef]
- Sołtysik-Piorunkiewicz, A.; Zdonek, I. How Society 5.0 and Industry 4.0 Ideas Shape the Open Data Performance Expectancy. Sustainability 2021, 13, 917. [Google Scholar] [CrossRef]
- Gronle, M.; Grasso, M.; Granito, E.; Schaal, F.; Colosimo, B.M. Open Data for Open Science in Industry 4.0: In-Situ Monitoring of Quality in Additive Manufacturing. J. Qual. Technol. 2022, 55, 1–13. [Google Scholar] [CrossRef]
- Wee, D.; Kelly, R.; Cattel, J.; Breuning, M. Industry 4.0-How to Navigate Digitization of the Manufacturing Sector; Mckinsey & Company: New York, NY, USA, 2015; Volume 58. [Google Scholar]
- Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Sustainable Industry 4.0 framework: A Systematic Literature Review Identifying the Current Trends and Future Perspectives. Process Saf. Environ. Prot. 2018, 117, 408–425. [Google Scholar] [CrossRef]
- Varela, L.; Araújo, A.; Ávila, P.; Castro, H.; Putnik, G. Evaluation of the Relation between Lean Manufacturing, Industry 4.0, and Sustainability. Sustainability 2019, 11, 1439. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Vrat, P.; Shankar, R. Factors Influencing the Implementation of Industry 4.0 for Sustainability in Manufacturing. Glob. J. Flex. Syst. Manag. 2022, 23, 453–478. [Google Scholar] [CrossRef]
- Contini, G.; Peruzzini, M. Sustainability and Industry 4.0: Definition of a Set of Key Performance Indicators for Manufacturing Companies. Sustainability 2022, 14, 11004. [Google Scholar] [CrossRef]
- Shet, S.V.; Pereira, V. Proposed Managerial Competencies for Industry 4.0—Implications for Social Sustainability. Technol. Forecast. Soc. Change 2021, 173, 121080. [Google Scholar] [CrossRef]
- Grabowska, S.; Saniuk, S.; Gajdzik, B. Industry 5.0: Improving Humanization and Sustainability of Industry 4.0. Scientometrics 2022, 127, 3117–3144. [Google Scholar] [CrossRef]
- Hevner, A.R.; March, S.T.; Park, J.; Ram, S. Design Science in Information Systems Research. MIS Q. Manag. Inf. Syst. 2004, 28, 75–105. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://cran.r-project.org/doc/manuals/r-devel/fullrefman.pdf (accessed on 30 May 2022).
- Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 2018, 3, 1026. [Google Scholar] [CrossRef]
- Thames, L.; Schaefer, D. Industry 4.0: An Overview of Key Benefits, Technologies, and Challenges. In Springer Series in Advanced Manufacturing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–33. [Google Scholar]
- UN. Goal 9—Industry, Innovation and Infrastructure, Sustainable Development Goals; UN: New York, NY, USA, 2022. [Google Scholar]
- Angelidou, M. Smart City Policies: A spatial approach. Cities 2014, 41, S3–S11. [Google Scholar] [CrossRef]
- IMD. Smart City Observatory. Available online: https://www.imd.org/smart-city-observatory/home/ (accessed on 20 September 2022).
- Mansfield, E.; Lee, J.-Y. The Modern University: Contributor to Industrial Innovation and Recipient of Industrial R&D Support. Res. Policy 1996, 25, 1047–1058. [Google Scholar] [CrossRef]
- The World Bank. World Development Indicators. Available online: http://data.worldbank.org/data-catalog/world-development-indicators (accessed on 15 September 2022).
- Kerr, S.P.; Kerr, W.; Özden, Ç.; Parsons, C. High-Skilled Migration and Agglomeration. Annu. Rev. Econ. 2016, 9, 201–234. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. Skills|LinkedIn Data. Available online: https://datacatalog.worldbank.org/search/dataset/0038027/Skills (accessed on 9 September 2022).
- ODW. Open Data Inventory 2020/21 Annual Report. Available online: https://opendatawatch.com/publications/open-data-inventory (accessed on 11 May 2022).
- Helliwell, J.F.; Layard, R.; Sachs, J.D.; Neve, J.-E.D. World happiness report 2020. Available online: https://worldhappiness.report/ed/2020/#appendices-and-data (accessed on 2 October 2022).
Research Design | Method |
---|---|
Research Type | Inductive and Quantitative |
Research Strategy |
|
Sampling Strategy | Probability Sampling within groups such as regions, countries, industries, and enterprise size |
Data Collection Method | Open Datasets |
Data Analysis Tools | Open-Source software tools such as Python and R |
Groups | ||||
---|---|---|---|---|
China and the US | G7 | BIC | ||
Skills | Specialized Industry | China US | G7 , except the US | All BIC |
Soft | China and US | G7 , except the US | Brazil and India China and | |
Disruptive Tech | China and the US | G7 , except Italy | Brazil and India China | |
Disruptive Tech in Industry 4.0 | China US | G7 , except Italy | BIC |
Industry 4.0 | ||||
---|---|---|---|---|
Manufacturing Value Added to GDP | Smart City Index | R&D Efforts for Innovation | ||
Sustainability | Specialized Skills | Germany, Italy, Japan, and the US. | Canada, France, Germany, Italy, Japan, and the United Kingdom. | No evidence |
Soft Skills | Germany, Italy, Japan, and the US. | Canada, France, Germany, Italy, Japan, and the United Kingdom. | No evidence | |
Disruptive Tech | Germany, Italy, Japan, and the US. | Canada, France, Germany, Japan, the United Kingdom, and the US. | No evidence | |
Openness and Happiness | Germany, Italy, Japan, and the US. | Canada, France, Germany, Italy, Japan, the United Kingdom, and the US. | No evidence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, H.; Costa, F.; Ferreira, T.; Ávila, P.; Cruz-Cunha, M.; Ferreira, L.; Putnik, G.D.; Bastos, J. Data Science for Industry 4.0 and Sustainability: A Survey and Analysis Based on Open Data. Machines 2023, 11, 452. https://doi.org/10.3390/machines11040452
Castro H, Costa F, Ferreira T, Ávila P, Cruz-Cunha M, Ferreira L, Putnik GD, Bastos J. Data Science for Industry 4.0 and Sustainability: A Survey and Analysis Based on Open Data. Machines. 2023; 11(4):452. https://doi.org/10.3390/machines11040452
Chicago/Turabian StyleCastro, Hélio, Filipe Costa, Tânia Ferreira, Paulo Ávila, Manuela Cruz-Cunha, Luís Ferreira, Goran D. Putnik, and João Bastos. 2023. "Data Science for Industry 4.0 and Sustainability: A Survey and Analysis Based on Open Data" Machines 11, no. 4: 452. https://doi.org/10.3390/machines11040452
APA StyleCastro, H., Costa, F., Ferreira, T., Ávila, P., Cruz-Cunha, M., Ferreira, L., Putnik, G. D., & Bastos, J. (2023). Data Science for Industry 4.0 and Sustainability: A Survey and Analysis Based on Open Data. Machines, 11(4), 452. https://doi.org/10.3390/machines11040452