Experimental and Stochastic Application of an Elastic Foundation in Loose Material Transport via Sandwich Belt Conveyors
Abstract
:1. Introduction
1.1. Belt Conveyors
- -
- Increase the coefficient of friction between the conveyor belt and the conveyed material;
- -
- Structurally modify the surface of the conveyor belt so that the relative movement of the conveyed grains along the belt is prevented [5] (in the case of either inward transport against the direction of belt movement, or downward transport in the direction of conveyor belt movement); and
- -
- Increase the pressure of the conveyed material on the conveyor belt [6].
- -
- The weight of the conveyor belt;
- -
- Exertion of external pressure forces by means of spring-loaded rollers;
- -
- Elasticated air-filled bags, and
- -
- Magnetic forces in the transport of ferromagnetic as well as non-magnetic materials.
1.2. Loose Materials
1.3. Solved Problem
2. Materials and Methods
2.1. Experimental Equipment
2.2. Wheat as Loose Material
2.3. Experimental Measurements
2.4. Analytical Calculation of the Stiffness of an Elastic Foundation
2.4.1. The Winkler Model of Elastic Foundation
2.4.2. Boundary Conditions of the Analytical Solution
2.4.3. Relationships for the Calculation of Quantities Below the Measured Points
2.5. Probabilistic Approaches in Mechanics
3. Results
3.1. Basic Processing of Results
3.2. Stochastic Processing of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
/m/ | Integral constants for the solution of a differential equation, see Table 1 | |
/mm/ | Largest grain length | |
/m−3/ | Regression constant | |
B | /m/ | Belt width |
/m−3/ | Regression constant | |
/Nm−3/ | Regression constant | |
/rad/ | Slope (first derivative of deflection) | |
/m−1/ | Second derivative of deflection | |
/m−3/ | Fourth derivative of deflection | |
E | /Pa/ | Young’s Modulus of a Belt |
/1/ | Error between analytical and approximated values of Winkler moduli of elastic foundation | |
e | /1/ | Euler’s number |
/N/ | Loading force | |
Function of and | ||
First derivative of function | ||
FEM | Finite Element Method | |
g | /ms−2/ | Gravity acceleration |
Function of and | ||
h | /mm/ | Loose material layer thickness |
/1/ | Truncated normal histogram created from | |
/1/ | Truncated normal histogram created from | |
i | /1/ | Index |
/m4/ | Principal second moment of cross-sectional area of a belt | |
/Nm−3/ | Winkler modulus of elastic foundation | |
/Nm−3/ | Winkler modulus of foundation calculated from deflections | |
/Nm−3/ | Hetényi modulus of foundation | |
/Nm/ | Hetényi modulus of foundation | |
/Nm−3/ | Analytical Winkler modulus of foundation (i.e., and ) | |
/Nm−3/ | Winkler modulus of foundation calculated from deflections | |
/Nm−3/ | Winkler modulus of foundation in initial iteration | |
/Nm−3/ | Winkler modulus of foundation in nth iteration | |
/Nm−3/ | Winkler modulus of foundation in nth + 1 iteration | |
/Nm−3/ | Approximation function of Winkler modulus of foundation | |
/Nm−3/ | Approximation function of Winkler modulus of foundation for h = 36 mm | |
/Nm−3/ | Stochastic function of Winkler modulus of foundation for h = 36 mm | |
/Nm−3/ | Stochastic function displayed by Anthill software | |
/Nm−3/ | Approximation function of Winkler modulus of foundation for h = 72 mm | |
/Nm−3/ | Stochastic function of Winkler modulus of foundation for h = 72 mm | |
/Nm−3/ | Stochastic function displayed by Anthill software | |
L | /m/ | Span between pressure rollers |
/Nm/ | Bending moment in the belt | |
m | /kg/ | Weight of loading |
/N/ | Tensile force in the belt | |
/1/ | Index | |
Steps | /1/ | Number of Monte Carlo random simulations |
/N/ | Shearing force in the belt | |
t | /m/ | Thickness of the belt |
/m/ | Deflection of belt | |
/m/ | Deflection of belt midway between the forces | |
/m/ | Deflection of belt under the force | |
x | Axis X of coordinate system | |
/m/ | General distance from the origin of coordinate system | |
y | Axis Y of coordinate system | |
z | Axis Z of coordinate system | |
ψd | Loose grain angle | |
/m−1/ | Parameter of solution of differential equation | |
/m−1/ | Parameter of solution of differential equation | |
/m−1/ | Parameter of solution of differential equation | |
/kgm−3/ | Loose weight | |
/1/ | Standard deviation of error for a wheat layer thickness h = 36 mm | |
/1/ | Standard deviation of error for a wheat layer thickness h = 72 mm |
References
- ČSN 260002; Material Handling. Nomenclature. Publishing Office for Standards and Measurement: Prague, Czech Republic, 1983; p. 19.
- ISO 7149; Equipment for Smooth Transport of Loads. Safety Regulations. Special Provisions. Czech Standards Institute: Prague, Czech Republic, 1993; p. 32.
- Michalik, P.; Dobransky, J.; Hrabovský, L.; Petruš, M. Assessment of the Manufacturing Possibility of Thin-Walled Robotic Portals for Conveyor Workplaces. Adv. Sci. Technol. Res. J. 2018, 12, 338–345. [Google Scholar] [CrossRef]
- Hrabovský, L.; Fries, J. Transport Performance of a Steeply Situated Belt Conveyor. Energies 2021, 14, 7984. [Google Scholar] [CrossRef]
- Hrabovský, L. Loose Material Filling in the Loading trough Profile of the Belt Conveyor. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Prague, Czech Republic, 9–11 September 2021; Volume 1190. [Google Scholar] [CrossRef]
- Hrabovsky, L.; Molnar, V.; Fedorko, G.; Tkac, J.; Frydrysek, K. Experimental Determination of Force Acting on a Sandwich Conveyor’s Pressure Roller in Transport of Bulk Materials for the Needs of Failure Analysis. Measurement 2022, 202, 111832. [Google Scholar] [CrossRef]
- Hrabovský, L.; Blata, J.; Hrabec, L.; Fries, J. The Detection of Forces Acting on Conveyor Rollers of a Laboratory Device Simulating the Vertical Section of a Sandwich Belt Conveyor. Measurement 2023, 207, 112376. [Google Scholar] [CrossRef]
- Fedorko, G.; Molnar, V.; Vasil, M.; Salai, R. Proposal of Digital Twin for Testing and Measuring of Transport Belts for Pipe Conveyors within the Concept Industry 4.0. Measurement 2021, 174, 108978. [Google Scholar] [CrossRef]
- Zegzulka, J. Mechanics of Loose Materials; VŠB-Technical University Ostrava: Ostrava, Czech Republic, 2004; p. 186. ISBN 80-248-0699-1. [Google Scholar]
- Gelnar, D.; Zegzulka, J. Discrete Element Method in the Design of Transport Systems: Verification and Validation of 3D Models; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-05712-1. [Google Scholar]
- RSCC. Available online: https://www.hbm.cz/produkty/kategorie/rscc/ (accessed on 12 November 2022).
- State Standard for the Specific Weight of Cereals with a Volume of 20 l. Available online: https://www.cmi.cz/statni%20etalon%20objemove%20hmotnosti%20obilovin (accessed on 14 November 2022).
- ČSN EN ISO 7971-1; Cereals—Determination of the Specific Weight, Also Known as the ‘Hectolitre Weight’—Part 1: Reference Method. Office for Technical Standards, Metrology and Testing: Prague, Czech Republic, 2010; p. 20.
- ČSN EN ISO 7971-2; Cereals—Determination of the Specific Weight, Also Known as the ‘Hectolitre Weight’—Part 2: Traceability Method for Measuring Instruments to Verify the Instrument According to the International Standard. Office for Technical Standards, Metrology and Testing: Prague, Czech Republic, 2019; p. 36.
- Frydrýšek, K.; Jančo, R.; Nikodým, M. Beams and Frames on Elastic Foundation 3; VŠB—Ostrava Technical University: Ostrava, Czech Republic, 2010; p. 463. ISBN 80-248-1244-4. [Google Scholar]
- Qissab, M.A. Flexural Behaviour of Laterally Loaded Tapered Piles in Cohesive Soils. OJCE 2015, 05, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Avramidis, I.E.; Morfidis, K. Bending of Beams on Three-Parameter Elastic Foundation. Int. J. Solids Struct. 2006, 43, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Kanie, S.; Mikami, T. Mathematical Analogy of a Beam on Elastic Supports as a Beam on Elastic Foundation. Appl. Math. Model. 2008, 32, 688–699. [Google Scholar] [CrossRef]
- Winkler, E. Die Lehre von Der Elastizitat und Festigkeit (The Theory of Elasticity and Stiffness); H. Dominicus: Prague, Czech Republic, 1867. [Google Scholar]
- Hetenyi, M. Beams on Elastic Foundations; University of Michigan Press: Ann Arbor, MI, USA, 1946. [Google Scholar]
- Hrabovský, L.; Frydrýšek, K.; Čepica, D. Winkler and Hetenyi Elastic Foundation Applied in Belt Conveyors for Wheat Transport. In Proceedings of the 27/28th International Conference Engineering Mechanics 2022, Milovy, Czech Republic, 9–12 May 2022; pp. 149–152. [Google Scholar]
- Li, R.; Zhong, Y.; Li, M. Analytic Bending Solutions of Free Rectangular Thin Plates Resting on Elastic Foundations by a New Symplectic Superposition Method. R. Soc. A Math. Phys. Eng. Sci. 2013, 469, 20120681. [Google Scholar] [CrossRef]
- Silva, A.; Silveira, R.; Gonçalves, P. Numerical Methods for Analysis of Plates on Tensionless Elastic Foundations. Int. J. Solids Struct. 2001, 38, 2083–2100. [Google Scholar] [CrossRef]
- Benaroya, H.; Han, S.M.; Nagurka, M. Probability Models in Engineering and Science; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-8247-2315-6. [Google Scholar]
- Kalos, M.H.; Whitlock, P.A. Monte Carlo Methods, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008; ISBN 978-3-527-40760-6. [Google Scholar]
- Kroese, D.P.; Rubinstein, R.Y. Monte Carlo Methods. WIREs Comput. Stat. 2012, 4, 48–58. [Google Scholar] [CrossRef]
- Frydrýšek, K. Monte Carlo Probabilistic Approach Applied for Solving Problems in Mining Engineering. In Intelligent Systems for Computer Modelling; Stýskala, V., Kolosov, D., Snášel, V., Karakeyev, T., Abraham, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 75–85. [Google Scholar] [CrossRef]
- Frydrýšek, K.; Čada, R. Probabilistic Reliability Assessment of Femoral Screws Intended for Treatment of “Collum Femoris” Fractures. In Proceedings of the Biomechanics 2014: International Conference of the Polish Society of Biomechanics: Abstracts, Łódź, Poland, 1–3 September 2014; Lodz University of Technology: Łódź, Poland, 2014; pp. 61–62, ISBN 978-83-7283-628-1. [Google Scholar]
- Frydrýšek, K.; Šír, M.; Pleva, L.; Szeliga, J.; Stránský, J.; Čepica, D.; Kratochvíl, J.; Koutecký, J.; Madeja, R.; Dědková, K.P.; et al. Stochastic Strength Analyses of Screws for Femoral Neck Fractures. Appl. Sci. 2022, 12, 1015. [Google Scholar] [CrossRef]
- Marek, P. Probabilistic Assessment of Structures Using Monte Carlo Simulation: Background, Exercises and Software; Institute of Theoretical and Applied Mechanics Academy of Sciences of the Czech Republic: Prague, Czech Republic, 2003; ISBN 978-80-86246-19-2. [Google Scholar]
- Křivý, V.; Marek, P. Zur probabilistischen Bemessung von Stahlrahmen. Stahlbau 2007, 76, 12–20. [Google Scholar] [CrossRef]
- Lokaj, A.; Vavrusova, K.; Rykalova, E. Application of Laboratory Test Results of Dowel Joints in Cement-Splinter Boards VELOX into the Fully Probabilistic Methods (SBRA Method). Appl. Mech. Mater. 2012, 137, 95–99. [Google Scholar] [CrossRef]
- Milan Gustar; Pavel Marek. Anthill (Version 10 Pro). Available online: http://www.noise.cz/sbra/software.html (accessed on 11 November 2022).
- MATLAB. Computer software, 9.11.0.1769968 (R2021b); The MathWorks Inc.: Natick, MA, USA, 2021.
- Quarteroni, A.; Riccardo, S.; Fausto, S. Numerical Mathematics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-34658-6. [Google Scholar] [CrossRef] [Green Version]
- Younesian, D.; Hosseinkhani, A.; Askari, H.; Esmailzadeh, E. Elastic and viscoelastic foundations: A review on linear and nonlinear vibration modelling and applications. Nonlinear Dyn. 2019, 97, 853–895. [Google Scholar] [CrossRef]
- Dillard, D.A.; Mukherjee, B.; Karnal, P.; Batra, R.C.; Frechette, J. A review of Winkler’s foundation and its profound influence on adhesion and soft matter applications. Soft Matter 2018, 14, 3669–3683. [Google Scholar] [CrossRef]
- Čajka, R.; Vašková, J.; Vašek, J. Numerical Analyses of Subsoil-structure Interaction in Original Non-commercial Software based on FEM. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Ho Chi Minh City, Vietnam, 17–19 April 2018; Volume 143, p. 012003. [Google Scholar] [CrossRef]
- Murčinková, Z.; Šmeringaiová, A.; Halapi, M. Damping properties of composites with short and long fibres by impact testing. AIP Conf. Proc. 2019, 2077, 020042. [Google Scholar]
- Murčinková, Z.; Postawa, P.; Winczek, J. Parameters Influence on the Dynamic Properties of Polymer-Matrix Composites Reinforced by Fibres, Particles, and Hybrids. Polymers 2022, 14, 3060. [Google Scholar] [CrossRef]
- Vavrušová, K.; Mikolášek, D.; Lokaj, A.; Klajmonová, K.; Sucharda, O.; Parenica, P. Determination of Carrying Capacity of Steel-Timber Joints with Steel Rods Glued-In Parallel to Grain. Wood Res. 2016, 61, 733–740. [Google Scholar]
- Famfulík, J.; Míková, J.; Lánská, M.; Richtář, M. A Stochastic Model of the Logistics Actions Required to Ensure the Availability of Spare Parts During Maintenance of Railway Vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2014, 228, 85–92. [Google Scholar] [CrossRef]
- Tvrdá, K. Probability and Sensitivity Analysis of Plate. Appl. Mech. Mater. 2014, 617, 193–196. [Google Scholar] [CrossRef]
- Malerová, L.; Pokorný, J.; Kristlová, E.; Wojnarova, J. Using of mobile flood protection on the territory of the Moldova as possible protection of the community. IOP Conf. Ser. Earth Environ. Sci. 2017, 92, 12039. [Google Scholar] [CrossRef] [Green Version]
- Haniszewski, T.; Margielewicz, J.; Gąska, D.; Opasiak, T. New Crane Bumper Design with an Energy Absorption Device System. Transp. Probl. 2022, 17, 5–16. [Google Scholar] [CrossRef]
- Lesňák, M.; Maršálek, P.; Horyl, P.; Pištora, J. Load-Bearing Capacity Modelling and Testing of Single-Stranded Wire Rope. Acta Montan. Slovaca 2020, 25, 192–200. [Google Scholar] [CrossRef]
- Ungureanu, M.; Medan, N.; Ungureanu, N.S.; Pop, N.; Nadolny, K. Tribological Aspects Concerning the Study of Overhead Crane Brakes. Materials 2022, 15, 6549. [Google Scholar] [CrossRef]
Differential equations | |
Deflection /m/ | |
Slope /rad/ | |
Bending moment /Nm/ | |
Shearing force /N/ |
Deflection /m/ | |
Slope /rad/ | |
Bending moment /Nm/ | |
Shearing force /N/ |
Deflection under force F /m/ | |
Deflection midway between the forces F /m/ | |
Slope under force F /rad/ | |
Slope midway between the forces F /rad/ | 0 |
Bending moment under force F /Nm/ | |
Bending moment midway between the forces F /Nm/ | |
Shearing force under force F /N/ | |
Shearing force midway between the forces F /N/ | 0 |
Inputs from Experiment | Outputs | ||||
---|---|---|---|---|---|
Tensile Force N /N/ |
Loading Force F /N/ |
Deflection v /mm/ |
Winkler Modulus of Elasticity K /Nm−3/ | ||
Under Force F vF | Between Forces F v0 |
Under Force F KF |
Between Forces F K0 | ||
825 | 99.5 | 2.37 | Not measured | 388552 | Not calculated |
883 | 222.1 | 3.93 | 593598 | ||
974 | 344.7 | 4.88 | 807735 | ||
1100 | 472.3 | 5.76 | 983020 | ||
1176 | 594.9 | 6.72 | 1085698 | ||
250 | 160.1 | 2.04 | 1085077 | ||
269 | 282.7 | 3.38 | 1177415 | ||
303 | 405.3 | 4.26 | 1394325 | ||
356 | 527.9 | 5.52 | 1392673 | ||
386 | 594.9 | 6.32 | 1355528 | ||
603 | 160.1 | 1.87 | 1144399 | ||
619 | 282.7 | 2.58 | 1616621 | ||
646 | 405.3 | 4.27 | 1310841 | ||
698 | 527.9 | 5.30 | 1393375 | ||
712 | 594.9 | 5.82 | 1440310 | ||
154 | 160.1 | 1.20 | 2267645 | ||
178 | 282.7 | 2.73 | 1598355 | ||
206 | 405.3 | 3.24 | 2055253 | ||
252 | 527.9 | 5.25 | 1518707 | ||
280 | 594.9 | 6.13 | 1440006 | ||
682 | 160.1 | 1.76 | 1230281 | ||
691 | 282.7 | 2.88 | 1363932 | ||
718 | 405.3 | 3.74 | 1563796 | ||
747 | 527.9 | 4.62 | 1679055 | ||
761 | 594.9 | 5.32 | 1626241 | ||
264 | 160.1 | 2.57 | 782445 | ||
296 | 282.7 | 4.55 | 774149 | ||
347 | 405.3 | 6.10 | 840786 | ||
401 | 527.9 | 7.05 | 982880 | ||
448 | 594.9 | 7.80 | 1000092 | ||
350 | 160.1 | 2.00 | 1088641 | ||
371 | 282.7 | 3.07 | 1318829 | ||
410 | 405.3 | 4.65 | 1211655 | ||
462 | 527.9 | 5.62 | 1333423 | ||
488 | 594.9 | 6.53 | 1272758 | ||
520 | 160.1 | 2.14 | 960093 | ||
542 | 282.7 | 3.37 | 1124544 | ||
573 | 405.3 | 4.24 | 1341238 | ||
613 | 527.9 | 5.43 | 1366172 | ||
635 | 594.9 | 5.69 | 1506847 | ||
771 | 160.1 | 2.06 | 0.48 | 966801 | 479722 |
781 | 282.7 | 2.63 | 0.32 | 1533641 | 676775 |
804 | 405.3 | 3.77 | 0.30 | 1527840 | 765347 |
831 | 527.9 | 4.29 | 0.46 | 1837813 | 747131 |
849 | 594.9 | 4.53 | 0.45 | 2014491 | 781151 |
605 | 160.1 | 1.85 | 0.56 | 1157734 | 419956 |
619 | 282.7 | 3.43 | 0.50 | 1080675 | 544063 |
644 | 405.3 | 4.37 | 0.53 | 1271449 | 605248 |
682 | 527.9 | 5.19 | 0.44 | 1436339 | 695856 |
702 | 594.9 | 5.73 | 0.35 | 1475859 | 759345 |
479 | 160.1 | 2.32 | 0.57 | 863950 | 392665 |
499 | 282.7 | 3.39 | 0.62 | 1121037 | 476158 |
534 | 405.3 | 4.29 | 0.52 | 1327431 | 572800 |
578 | 527.9 | 5.49 | 0.32 | 1350807 | 699560 |
598 | 594.9 | 6.24 | 0.22 | 1330286 | 768184 |
354 | 160.1 | 1.94 | 0.42 | 1135778 | 413737 |
382 | 282.7 | 3.34 | 0.52 | 1172888 | 473918 |
427 | 405.3 | 4.63 | 0.50 | 1217474 | 543318 |
486 | 527.9 | 5.97 | 0.77 | 1220123 | 539226 |
521 | 594.9 | 6.61 | 0.48 | 1243692 | 638687 |
276 | 160.1 | 2.06 | 0.94 | 1065360 | 288915 |
307 | 282.7 | 3.86 | 0.99 | 970943 | 363472 |
353 | 405.3 | 5.19 | 0.77 | 1054064 | 461229 |
409 | 527.9 | 6.48 | 0.60 | 1104481 | 549785 |
437 | 594.9 | 6.68 | 0.35 | 1244116 | 640029 |
177 | 160.1 | 2.68 | 0.72 | 754264 | 306346 |
201 | 282.7 | 4.58 | 0.78 | 784705 | 372466 |
239 | 405.3 | 5.96 | 0.79 | 890653 | 424760 |
285 | 527.9 | 7.61 | 0.26 | 905809 | 586426 |
311 | 594.9 | 8.42 | 0.00 | 924039 | 43204480 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frydrýšek, K.; Čepica, D.; Hrabovský, L.; Nikodým, M. Experimental and Stochastic Application of an Elastic Foundation in Loose Material Transport via Sandwich Belt Conveyors. Machines 2023, 11, 327. https://doi.org/10.3390/machines11030327
Frydrýšek K, Čepica D, Hrabovský L, Nikodým M. Experimental and Stochastic Application of an Elastic Foundation in Loose Material Transport via Sandwich Belt Conveyors. Machines. 2023; 11(3):327. https://doi.org/10.3390/machines11030327
Chicago/Turabian StyleFrydrýšek, Karel, Daniel Čepica, Leopold Hrabovský, and Marek Nikodým. 2023. "Experimental and Stochastic Application of an Elastic Foundation in Loose Material Transport via Sandwich Belt Conveyors" Machines 11, no. 3: 327. https://doi.org/10.3390/machines11030327
APA StyleFrydrýšek, K., Čepica, D., Hrabovský, L., & Nikodým, M. (2023). Experimental and Stochastic Application of an Elastic Foundation in Loose Material Transport via Sandwich Belt Conveyors. Machines, 11(3), 327. https://doi.org/10.3390/machines11030327