Study on Human Motion Energy Harvesting Devices: A Review
Abstract
:1. Introduction
2. Development and Application of Triboelectric Nano Energy Generation Technology
2.1. Fundamentals of Triboelectric Nanogenerator Technology
2.2. Trial Production and Application of Triboelectric Nanogenerator
2.2.1. Transmission Signal
2.2.2. Power Supply to Small Equipment
2.2.3. Isolate Virus
2.3. Summary
2.3.1. Material
2.3.2. Structure
2.3.3. Energy Conversion Efficiency
2.3.4. Stability
2.4. Challenge
3. Study on Electromagnetic Energy Harvesting
3.1. Electromagnetic Power Generation Technology
3.2. Research on Electromagnetic Harvesting Devices
3.2.1. Electromagnetic Energy Harvesting Devices Based on Foot Movements
3.2.2. Electromagnetic Energy Harvesting Devices Designed for Other Body Parts
3.3. Summary
3.3.1. Materials
3.3.2. Structure
3.3.3. Energy Conversion Efficiency
3.3.4. Wearability
3.4. Challenge
4. Study on Piezoelectric Energy Harvesting
4.1. Piezoelectric Power Generation Technology
4.1.1. Theory and Model of Piezoelectric Effect
4.1.2. Piezoelectric Materials Research
4.2. Research on Piezoelectric Energy Harvesting Devices
4.2.1. Piezoelectric Ceramic Energy Harvesting Devices
4.2.2. Piezoelectric Film Energy Harvesting Devices
4.3. Summary
4.3.1. Materials
4.3.2. Structure
4.3.3. Energy Conversion Efficiency
4.3.4. Stability
4.4. Challenge
5. Summary of Energy Harvesting Methods
6. Analysis of Key Technologies
6.1. Integration of Biomechanics and Energy Harvesting Technology
6.2. Adaptability of Energy Harvesting Modes and Equipment Types to Human Motions
6.3. Improvement of Energy Harvesting Efficiency
6.4. Miniaturization of Energy Harvesting Devices
6.5. Evaluation of Energy Harvesting Experiment
- (a)
- (b)
- (c)
- The energy stored by the capacitor is used to show the energy storage effect. The electric energy harvested by the piezoelectric energy harvesting devices is stored in the capacitor through the storage circuit, and the voltage at both ends can be measured. Then, the energy in the capacitor can be calculated by [129,130,131,132,135].
- (d)
- The energy storage effect is shown by the time it takes to charge the battery to its rated voltage. Let the piezoelectric energy harvesting devices continue to work, then detect the voltage at both ends of the battery in the storage circuit and evaluate the strength of the energy storage effect by the time it takes different devices to charge the same battery to the same rated voltage [130,131,132,135].
- (e)
- Measured directly through the devices. Oscilloscope and current amplifier are used to measure the output voltage and output current, respectively [128].
7. Future Directions
7.1. Higher Energy Harvesting Efficiency
7.2. Design of Compound Energy Harvesting Devices
7.3. Effective Storage of Energy
7.4. A Wider Range of Applications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced micro-and nano-gas sensor technology: A review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef]
- Crescenzi, R.; Castellito, V.G.; Quaranta, S.; Balucani, M. Design of a Tri-Axial Surface Micromachined MEMS Vibrating Gyroscope. Sensors 2020, 20, 2822. [Google Scholar] [CrossRef]
- Wang, N.; Huang, H.; Zhu, W.X.; Zhao, X.; Yang, Y. Arc-Shaped Triboelectric Nanogenerator for Wind Energy Harvesting. Energy Technol. Gener. Convers. Storage Distrib. 2022, 5, 10. [Google Scholar] [CrossRef]
- Zhu, J.; Niu, X.; Hou, X.; He, J.; Chou, X.; Xue, C.; Zhang, W. Highly Reliable Real-time Self-powered Vibration Sensor Based on a Piezoelectric Nanogenerator. Energy Technol. 2018, 6, 781–789. [Google Scholar] [CrossRef]
- Ali, K.; Liu, A.X. Fine-grained Vibration Based Sensing Using a Smartphone. IEEE Trans. Mob. Comput. 2021, 21, 3971–3985. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Zhang, X.; Wang, X.; Zhang, X. Solvent-free and large-scale synthesis of SiOx/C nanocomposite with carbon encapsulation for high-performance lithium-ion battery anodes. Compos. Part B Eng. 2022, 247, 110308. [Google Scholar] [CrossRef]
- Vanita, V.; Waidha, A.I.; Yadav, S.; Schneider, J.J.; Clemens, O. Conductivity enhancement within garnet-rich polymer composite electrolytes via the addition of succinonitrile. Int. J. Appl. Ceram. Technol. 2022, 20, 236–250. [Google Scholar] [CrossRef]
- Venkatesan, S.V.; Nandy, A.; Karan, K.; Larter, S.R.; Thangadurai, V. Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices. Electrochem. Energy Rev. 2022, 5, 16. [Google Scholar] [CrossRef]
- Kanwade, A.; Shirage, P.M. A review on synergy of transition metal oxide nanostructured materials: Effective and coherent choice for supercapacitor electrodes. J. Energy Storage 2022, 55, 105692. [Google Scholar]
- Worsley, E.A.; Margadonna, S.; Bertoncello, P. Application of Graphene Nanoplatelets in Supercapacitor Devices: A Review of Recent Developments. Nanomaterials 2022, 12, 3600. [Google Scholar] [CrossRef]
- Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar]
- Iftikhar, M.; Latif, S.; Jevtović, V.; Ashraf, I.M.; El-Zahhar, A.; Saleh, E.A.M.; Abbas, S.M. Current advances and prospects in NiO-based lithium-ion battery anodes. Sustain. Energy Technol. Assess. 2022, 53, 102376. [Google Scholar]
- Zia, A.; Cai, Z.J.; Naveed, A.B.; Chen, J.; Wang, K.A. MXene, Silicene and Germanene: Preparation and Energy Storage Applications. Mater. Today Energy 2022, 30, 101144. [Google Scholar] [CrossRef]
- Asakawa, J.; Koizumi, H.; Kojima, S.; Nakano, M.; Komurasaki, K. Laser-ignited micromotor using multiple stacked solid propellant pellets. J. Propuls. Power 2019, 35, 41–53. [Google Scholar] [CrossRef]
- Fang, D.; Tang, S.W.; Wu, Z.Y.; Chen, C.L.; Wan, M.M.; Mao, C.; Zhou, M. Electrochemical sensor based on micromotor technology for detection of Ox-LDL in whole blood. Biosens. Bioelectron. 2022, 217, 114682. [Google Scholar] [CrossRef]
- Chang, S.H. Micro/nanomotors for metal ion detection and removal from water: A review. Mater. Today Sustain. 2022, 19, 100196. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wu, W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721. [Google Scholar] [CrossRef]
- Han, M.; Zhang, X.; Liu, W.; Sun, X.; Peng, X.; Zhang, X. Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism. Sci. China Technol. Sci. 2013, 56, 1835–1841. [Google Scholar] [CrossRef]
- Yan, J.; Ren, C.E.; Maleski, K.; Hatter, C.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264. [Google Scholar] [CrossRef]
- Tan, Y.; Dong, Y.; Wang, X. Review of MEMS electromagnetic vibration energy harvester. J. Microelectromech. Syst. 2016, 26, 1–16. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Sundararagavan, S.; Baker, E. Evaluating energy storage technologies for wind power integration. Sol. Energy 2012, 86, 2707–2717. [Google Scholar] [CrossRef]
- Currie, M.J.; Mapel, J.; Heidel, T.; Goffri, S.; Baldo, M. High-efficiency organic solar concentrators for photovoltaics. Science 2008, 321, 226–228. [Google Scholar] [CrossRef]
- Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699. [Google Scholar] [CrossRef]
- Zhang, N.; Tao, C.; Fan, X.; Jun, C. Progress in triboelectric nanogenerators as self-powered smart sensors. J. Mater. Res. 2017, 32, 1628–1646. [Google Scholar] [CrossRef]
- Sharghi, H.; Bilgen, O. Dynamics of pendulum-based systems under human arm rotational motions. Mech. Syst. Signal Process. 2023, 183, 109630. [Google Scholar] [CrossRef]
- Elman, N.M. The next generation of drug delivery system and diagnostics based on Micro-Electro-Mechanical-System (MEMS) and nanotechnology. Curr. Pharm. Biotechnol. 2010, 11, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Alzgool, M.; Mousavi, M.; Davaji, B.; Towfighian, S. Micro-triboelectric generator for zero-power shock detection. Nano Energy 2022, 103, 107758. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, X.; Jing, X.; Wang, F.; Zhang, Q.; Chen, F.; Hao, J.; Deng, C.; Zhou, J.; Yu, Y. Large-aperture, widely and linearly tunable, electromagnetically actuated MEMS Fabry-Perot filtering chips for longwave infrared spectral imaging. Opt. Express 2022, 30, 42541–42552. [Google Scholar] [CrossRef]
- Cai, M.; Yang, Z.; Cao, J.; Liao, W. Recent Advances in Human Motion Excited Energy Harvesting Systems for Wearables. Energy Technol. 2020, 8, 2000533. [Google Scholar] [CrossRef]
- Lai, Z.; Xu, J.; Bowen, C.; Zhou, S. Self-powered and self-sensing devices based on human motion. Joule 2022, 6, 1501–1565. [Google Scholar] [CrossRef]
- Zhang, Q.; Xin, C.F.; Shen, F.; Gong, Y.; Zi, Y.L.; Guo, H.Y.; Li, Z.J.; Peng, Y.; Zhang, Q.; Wang, Z.L. Human body IoT systems based on the triboelectrification effect: Energy harvesting, sensing, interfacing and communication. Energy Environ. Sci. 2022, 9, 3688–3721. [Google Scholar] [CrossRef]
- Li, Q.; Dai, K.; Zhang, W.; Wang, X.; You, Z.; Zhang, H. Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence. Digit. Signal Process. 2021, 113, 103038. [Google Scholar] [CrossRef]
- Park, K.W.; Choi, J.; Kong, K. Hybrid Filtered Disturbance Observer for Precise Motion Generation of a Powered Exoskeleton. IEEE Trans. Ind. Electron. 2022, 70, 646–656. [Google Scholar] [CrossRef]
- He, W.; He, W.; He, K.; Cui, H.; Wang, G. Using a rhythmic human shaker to identify modal properties of a stationary human body on a footbridge. J. Sound Vib. 2022, 540, 117309. [Google Scholar] [CrossRef]
- van der Zee, T.J.; Mundinger, E.M.; Kuo, A.D. A biomechanics dataset of healthy human walking at various speeds, step lengths and step widths. Sci. Data 2022, 9, 704. [Google Scholar] [CrossRef]
- Shepertycky, M.; Li, Q. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort. PLoS ONE 2015, 10, e0127635. [Google Scholar] [CrossRef] [PubMed]
- Ao, H.; Meng, Y.; Li, Y.; Li, R.; Jiang, H. Polyvinylidene Fluoride-Based Vibration Energy Harvester with Piezoelectric and Electromagnetic Effects. Energy Technol. 2022, 10, 2200373. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Khalid, S.; Raouf, I.; Khan, A.; Kim, N.; Kim, H. A review of human-powered energy harvesting for smart electronics: Recent progress and challenges. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 821–851. [Google Scholar] [CrossRef]
- Miura, K.; Kadone, H.; Koda, M.; Nakayama, K.; Kumagai, H.; Nagashima, K.; Mataki, K.; Fujii, K.; Noguchi, H.; Funayama, T.; et al. Visualization of walking speed variation-induced synchronized dynamic changes in lower limb joint angles and activity of trunk and lower limb muscles with a newly developed gait analysis system. J. Orthop. Surg. 2018, 26, 2309499018806688. [Google Scholar] [CrossRef]
- Pieniazek, M.; Chwala, W.; Szczechowicz, J.; Pelczar-Pieniazek, M. Upper limb joint mobility ranges during activities of daily living determined by three-dimensional motion analysis--preliminary report. Ortop. Traumatol. Rehabil. 2007, 9, 413–422. [Google Scholar]
- Wang, Z.; Zhao, Y. High-pressure microscopy. Science 2006, 312, 1149–1150. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, B.; Yang, Y.; Yang, Z.; Liu, X.; Lim, K.; Chen, J.; Ji, L.; Lin, Z.; Cheng, J. Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosens. Bioelectron. 2022, 216, 114595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. On the expanded Maxwell’s equations for moving charged media system—General theory, mathematical solutions and applications in TENG. Mater. Today 2021, 52, 348–363. [Google Scholar] [CrossRef]
- Lin, S.; Chen, X.; Wang, Z.L. Contact electrification at the liquid–solid interface. Chem. Rev. 2021, 122, 5209–5232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Patil, S.R.; Chougale, M.Y.; Kim, J.; Shaukat, R.A.; Noman, M.M.; Saqib, Q.M.; Khan, M.U.; Dongale, T.D.; Bae, J. Triboelectric nanogenerator based on bio-waste tribopositive delonix regia flowers powder. Energy Technol. 2022, 10, 2200876. [Google Scholar] [CrossRef]
- Zou, J.; Cai, W.; Zhang, Q. Subthreshold Schottky-contacted carbon nanotube network film field-effect transistors for ultralow-power electronic applications. Nanotechnology 2022, 33, 505206. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Pal, K. Triboelectric Nanogenerators for Mechanical Energy Harvesting. Energy Technol. Gener. Convers. Storage Distrib. 2018, 6, 958–997. [Google Scholar] [CrossRef]
- Chang, C.; Tran, V.H.; Wang, J.; Fuh, Y.; Lin, L. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 2010, 10, 726–731. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Xing, F.; Jie, Y.; Cao, X.; Li, T.; Wang, N. Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy. Nano Energy 2017, 42, 138–142. [Google Scholar] [CrossRef]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef]
- Fu, J.; Xia, K.; Xu, Z. A triboelectric nanogenerator based on human fingernail to harvest and sense body energy. Microelectron. Eng. 2020, 232, 111408. [Google Scholar] [CrossRef]
- Wang, S.; Lin, L.; Wang, Z.L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346. [Google Scholar] [CrossRef]
- Bhatta, T.; Pukar, C.; Hyunok, P.; Chani, Y.; Sang, H.; Sudeep, S.; Rahman, M.; Rana, M.T.; SohelPark, S.M.; Jae, Y. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 2021, 81, 105670. [Google Scholar] [CrossRef]
- Shabbir, I.; Lee, D.; Choo, D.C.; Lee, Y.H.; Park, K.K.; Yoo, K.H.; Kim, S.W.; Kim, T.W. A graphene nanoplatelets-based high-performance, durable triboelectric nanogenerator for harvesting the energy of human motion. Energy Rep. 2022, 8, 1026–1033. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.T.; Hsiao, Y.C.; Lai, Y.C. Mycena chlorophos-inspired autoluminescent triboelectric fiber for wearable energy harvesting, self-powered sensing, and as human–device interfaces. Nano Energy 2022, 94, 106944. [Google Scholar] [CrossRef]
- Kang, M.; Jang, N.Y.; Kim, Y.J.; Ro, H.J.; Kim, D.; Kim, Y. Virus blocking textile for SARS-CoV-2 using human body triboelectric energy harvesting. Cell Rep. Phys. Sci. 2022, 3, 100813. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef]
- Costa, P.; Nunes-Pereira, J.; Pereira, N.; Castro, N.; Gonçalves, S.; Lanceros-Mendez, S. Recent Progress on Piezoelectric, Pyroelectric, and Magnetoelectric Polymer-Based Energy-Harvesting Devices. Energy Technol. 2019, 7, 1800852. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Turconi, R.; Boldrin, A.; Astrup, T. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renew. Sustain. Energy Rev. 2013, 28, 555–565. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Islam, M.R.; Farrok, O.; Rahman, M.A.; Kiran, M.R.; Muttaqi, K.M.; Sutanto, D. Design and characterisation of advanced magnetic material-based core for isolated power converters used in wave energy generation systems. IET Electr. Power Appl. 2020, 14, 733–741. [Google Scholar] [CrossRef]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef]
- Vullers, R.J.M.; Schaijk, R.V.; Doms, I.; Hoof, C.V.; Mertens, R. Micropower energy harvesting. Solid-State Electron. 2009, 53, 684–693. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, H.; Yang, Z.; Khaligh, A. Unconventional wearable energy harvesting from human horizontal foot motion. In Proceedings of the 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011. [Google Scholar]
- Liu, Y.; Fu, W.; Li, W.; Sun, M. Design and analysis of a shoe-embeded power harvester based on magnetic gear. IEEE Trans. Magn. 2016, 52, 9100404. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Gui, P.; Deng, F.; Liang, Z.; Cai, Y.; Chen, J. Micro linear generator for harvesting mechanical energy from the human gait. Energy 2018, 154, 365–373. [Google Scholar] [CrossRef]
- Wang, S.; Miao, G.; Zhou, S.; Yang, Z.; Yurchenko, D. A novel electromagnetic energy harvester based on the bending of the sole. Appl. Energy 2022, 314, 119000. [Google Scholar] [CrossRef]
- Berdy, D.F.; Valentino, D.J.; Peroulis, D. Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester. Sens. Actuators A Phys. 2015, 222, 262–271. [Google Scholar] [CrossRef]
- Saha, C.R.; O’Donnell, T.; Wang, N.; Mccloskey, P. Electromagnetic generator for harvesting energy from human motion. Sens. Actuators A Phys. 2017, 147, 248–253. [Google Scholar] [CrossRef]
- Halim, M.A.; Cho, H.; Salauddin, M.; Park, J.Y. A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion. Sens. Actuators A Phys. 2016, 249, 23–31. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Zhang, N.; Lin, J.; Liao, W.H. Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments. Energy Convers. Manag. 2017, 132, 189–197. [Google Scholar] [CrossRef]
- Zhou, N.; Hou, Z.; Zhang, Y.; Cao, J.; Bowen, C.R. Enhanced swing electromagnetic energy harvesting from human motion. Energy 2021, 228, 120591. [Google Scholar] [CrossRef]
- Li, Z.; Luo, J.; Xie, S.; Xin, L.; Naguib, H. Instantaneous peak 2.1 W-level hybrid energy harvesting from human motions for self-charging battery-powered electronics. Nano Energy 2021, 81, 105629. [Google Scholar] [CrossRef]
- Sharghi, H.; Bilgen, O. Energy Harvesting from Human Walking Motion using Pendulum-based Electromagnetic Generators. J. Sound Vib. 2022, 534, 117036. [Google Scholar] [CrossRef]
- Zou, H.; Li, M.; Zhao, L.; Liao, X.; Gao, Q.; Yan, G.; Du, R.; Wei, K.; Zhang, W. Cooperative compliant traction mechanism for human-friendly biomechanical energy harvesting. Energy Convers. Manag. 2022, 258, 115523. [Google Scholar] [CrossRef]
- Kecik, K.; Stezycka, E. Nonlinear Dynamics and Energy Harvesting of a Two-Degrees-of-Freedom Electromagnetic Energy Harvester near the Primary and Secondary Resonances. Appl. Sci. 2023, 13, 7613. [Google Scholar] [CrossRef]
- Toprak, A.; Tigli, O. Piezoelectric energy harvesting: State-of-the-art and challenges. Appl. Phys. Rev. 2014, 1, 031104. [Google Scholar] [CrossRef]
- Vijatović, M.M.; Bobić, J.D.; Stojanović, B.D. History and challenges of barium titanate: Part I. Sci. Sinter. 2008, 40, 155–165. [Google Scholar] [CrossRef]
- Zhang, S.; Li, F.; Jiang, X.; Kim, J.; Luo, J.; Geng, X. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—A review. Prog. Mater. Sci. 2015, 68, 1–66. [Google Scholar] [CrossRef] [PubMed]
- Belavič, D.; Bradesko, A.; Zarnik, M.S.; Rojac, T. Construction of a piezoelectric-based resonance ceramic pressure sensor designed for high-temperature applications. Metrol. Meas. Syst. 2015, 22, 331–340. [Google Scholar] [CrossRef]
- Yogeswaran, N.; Navaraj, W.T.; Gupta, S.; Liu, F.; Vinciguerra, V.; Lorenzelli, L. Piezoelectric graphene field effect transistor pressure sensors for tactile sensing. Appl. Phys. Lett. 2018, 113, 014102. [Google Scholar] [CrossRef]
- Cao, L.; Yan, J.; Yin, L. Effects of dielectric substrates on piezoelectric transducer tunable filter. Microw. Opt. Technol. Lett. 2019, 61, 2399–2404. [Google Scholar] [CrossRef]
- Tadigadapa, S.A.K.M.; Mateti, K. Piezoelectric MEMS sensors: State-of-the-art and perspectives. Meas. Sci. Technol. 2009, 20, 092001. [Google Scholar] [CrossRef]
- Bhadbhade, V.; Jalili, N.; Mahmoodi, S.N. A novel piezoelectrically actuated flexural/torsional vibrating beam gyroscope. J. Sound Vib. 2008, 311, 1305–1324. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, X.; Xiao, D.; Wu, Y.; Cui, H.; Xi, X. Design, analysis and experiment of a novel ring vibratory gyroscope. Sens. Actuators A Phys. 2011, 168, 286–299. [Google Scholar] [CrossRef]
- Zhang, E.; Laufer, J.; Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 2008, 47, 561–577. [Google Scholar] [CrossRef]
- Hyeon, D.Y.; Park, K.I. Piezoelectric Flexible Energy Harvester Based on BaTiO3 Thin Film Enabled by Exfoliating the Mica Substrate. Energy Technol. 2019, 7, 1900638. [Google Scholar] [CrossRef]
- Xiao, H.; Li, T.; Zhang, L.; Liao, W.H.; Tan, T.; Yan, Z. Metamaterial based piezoelectric acoustic energy harvesting: Electromechanical coupled modeling and experimental validation. Mech. Syst. Signal Process. 2023, 185, 109808. [Google Scholar] [CrossRef]
- Meng, Q.; Jin, W.; Zhang, Z.; Zhang, M.; Shen, X.; Zhou, Z.; Sun, Q. Piezoelectric performance improvement via macromolecular rearrangement. Smart Mater. Struct. 2022, 31, 115012. [Google Scholar] [CrossRef]
- Fu, H.; Cohen, R.E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 2000, 403, 281–283. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 2009, 18, 025009. [Google Scholar] [CrossRef]
- Filippov, D.A.; Radchenko, G.S.; Firsova, T.O.; Galkina, T.A. A theory of the inverse magnetoelectric effect in layered magnetostrictive–piezoelectric structures. Phys. Solid State 2017, 59, 878–884. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, Y.; Bao, H.; Gao, J.; Chao, Z.; Ren, X. Large piezoelectric effect in Pb-free Ba (Ti, Sn) O3−x (Ba, ca) TiO3 ceramics. Appl. Phys. Lett. 2011, 99, 122901. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef]
- Nan, C.-W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 1. [Google Scholar] [CrossRef]
- Hu, D.; Kong, X.; Mori, K.; Tanaka, Y.; Shinagawa, K.; Feng, Q. Ferroelectric mesocrystals of bismuth sodium titanate: Formation mechanism, nanostructure, and application to piezoelectric materials. Inorg. Chem. 2013, 52, 10542–10551. [Google Scholar] [CrossRef] [PubMed]
- Rödel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.M.; Damjanovic, D. Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Rödel, J.; Webber, K.G.; Dittmer, R.; Jo, W.; Damjanovic, D. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Xiao, D.; Zhu, J.; Cheng, X.; Zheng, T.; Zhang, B.; Lou, X.; Wang, X. Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 2014, 136, 2905–2910. [Google Scholar] [CrossRef]
- Velasco-Lozano, S.; Knez, M.; López-Gallego, F. Coupling enzymes and inorganic piezoelectric materials for electricity production from renewable fuels. ACS Appl. Energy Mater. 2018, 1, 2032–2040. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef]
- Cottone, F.; Vocca, H.; Gammaitoni, L. Nonlinear energy harvesting. Phys. Rev. Lett. 2009, 102, 080601. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, J.H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Moro, L.; Benasciutti, D. Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers. Smart Mater. Struct. 2010, 19, 115011. [Google Scholar] [CrossRef]
- Haghbin, N. Shoe Embedded Air Pump Type Piezoelectric Power Harvester; Ryerson University: Toronto, ON, Canada, 2011. [Google Scholar]
- Pozzi, M.; Zhu, M. Plucked piezoelectric bimorphs for knee-joint energy harvesting: Modelling and experimental validation. Smart Mater. Struct. 2011, 20, 055007. [Google Scholar] [CrossRef]
- Hwang, S.J.; Jung, H.J.; Kim, J.H.; Ahn, J.H.; Song, D.; Song, Y. Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps. Curr. Appl. Phys. 2015, 15, 669–674. [Google Scholar] [CrossRef]
- Ansari, M.H. Application of Smart Materials in Energy Harvesting and Wave Propagation. Ph.D. Thesis, State University of New York at Buffalo, Buffalo, NY, USA, 2018. [Google Scholar]
- Izadgoshasb, I.; Lim, Y.Y.; Tang, L.; Padilla, R.V.; Tang, Z.S.; Sedighi, M. Improving efficiency of piezoelectric based energy harvesting from human motions using double pendulum system. Energy Convers. Manag. 2019, 184, 559–570. [Google Scholar] [CrossRef]
- Fan, K.; Liu, Z.; Liu, H.; Wang, L.; Zhu, Y.; Yu, B. Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Appl. Phys. Lett. 2017, 110, 143902. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Bowen, C.R.; Zhou, S.; Lin, J. Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions. Energy 2017, 118, 221–230. [Google Scholar] [CrossRef]
- Halim, M.A.; Park, J.Y. Piezoelectric energy harvester using impact-driven flexible side-walls for human-limb motion. Microsyst. Technol. 2018, 24, 2099–2107. [Google Scholar] [CrossRef]
- Qian, F.; Xu, T.B.; Zuo, L. Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism. Energy 2019, 189, 116140. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, F.U.; Mehdi, M.; Cheok, Q.; Abas, E.; Naurman, M.M. Power harvesting footwear based on piezo-electromagnetic hybrid generator for sustainable wearable microelectronics. J. King Saud Univ.-Eng. Sci. 2020, 34, 329–338. [Google Scholar] [CrossRef]
- Gljušćić, P.; Zelenika, S. Experimental Characterization of Optimized Piezoelectric Energy Harvesters for Wearable Sensor Networks. Sensors 2021, 21, 7042. [Google Scholar]
- Mateu, L.; Moll, F. Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J. Intell. Mater. Syst. Struct. 2005, 16, 835–845. [Google Scholar] [CrossRef]
- Han, D.; Kaajakari, V. Microstructured polymer for shoe power generation. In Proceedings of the TRANSDUCERS 2009—2009 International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, USA, 21–25 June 2009. [Google Scholar]
- Li, X.; Lin, Z.H.; Cheng, G.; Wen, X.; Liu, Y.; Niu, S.; Wang, Z. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 2014, 8, 10674–10681. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Cai, M. An in-shoe harvester with motion magnification for scavenging energy from human foot strike. IEEE/ASME Trans. Mechatron. 2015, 20, 3264–3268. [Google Scholar] [CrossRef]
- Saha, P.; Goswami, S.; Chakrabarty, S.; Sarkar, S. Simulation and model verification of shoe embedded piezoelectric energy harvester. In Proceedings of the 2014 6th IEEE Power India International Conference (PIICON), Delhi, India, 5–7 December 2014. [Google Scholar]
- Jung, W.S.; Lee, M.J.; Kang, M.G.; Moon, H.G.; Yoon, S.J.; Baek, S.H. Powerful curved piezoelectric generator for wearable applications. Nano Energy 2015, 13, 174–181. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, J.; Fang, Y.; Zhao, X.; Chen, J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021, 83, 105845. [Google Scholar] [CrossRef]
- Kim, S.; Hyeon, D.Y.; Ham, S.S.; Youn, J.; Park, K.I. Synergetic enhancement of the energy harvesting performance in flexible hybrid generator driven by human body using thermoelectric and piezoelectric combine effects. Appl. Surf. Sci. 2021, 558, 149784. [Google Scholar] [CrossRef]
- Bae, J.; Song, J.; Jeong, W.; Nandanapalli, K.R.; Son, N.; Zulkifli, N.A.B. Multi-deformable piezoelectric energy nano-generator with high conversion efficiency for subtle body movements. Nano Energy 2022, 97, 107223. [Google Scholar] [CrossRef]
- Lv, P.; Qian, J.; Yang, C.; Liu, T.; Wang, Y.; Wang, D.; Huang, S.; Cheng, X.; Cheng, Z. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy 2022, 97, 107182. [Google Scholar] [CrossRef]
- Invernizzi, F.; Dulio, S.; Patrini, M.; Guizzettic, G.; Mustarelli, P. Energy harvesting from human motion: Materials and techniques. Chem. Soc. Rev. 2016, 45, 5455–5473. [Google Scholar] [CrossRef]
- Riemer, R.; Shapiro, A. Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions. J. Neuro Eng. Rehabil. 2011, 8, 22. [Google Scholar] [CrossRef]
- Zhao, J.; You, Z. A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors. Sensors 2014, 14, 12497–12510. [Google Scholar] [CrossRef] [PubMed]
Research Institutions | Devices | Material | Body Parts | Experiment Apparatus | Load | Output Effect |
---|---|---|---|---|---|---|
University of California [52] | Polyvinylidene difluoride nanofiber | Electrospinning, polyvinylidene difluoride | Whole body | Oscilloscope, Current Amp | Commercial LED | A strain of 0.085% applied over 0.04 and 0.10 s, output currents of 2.74 and 1.16 nA |
Georgia Institute of Technology [53] | Triboelectric generator | Kapton film, Flexible PET substrate | Whole body | Oscilloscope, Current Amp | Load circuit | Power density of 10.4 mW/cm3, up to 3.3 V output voltage |
Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst [54] | TENG | PVDF, rubber | Foot | Keithley system electrometer, Stanford low-noise current preamplifier | LED | Open-circuit voltage 400 V, short-circuit current 12 μA |
Univ Calif Berkeley [55] | Wearable sensor system | Graphene, AgNW | Whole body | Electrometer, Oscilloscope | Load circuit, LED | The scope of harvesting energy in the heart about 0.5–4 mV and 0.05–4 μA |
Ocean College, Zhejiang University [56] | TENG | Nail polish powder, Teflon glue | Finger | Fourier Transform infrared spectroscopy, STANFORD SR560, Bruker VERTEX 70 | LED, recognition system | 87.3 V open-circuit voltage, 3.2 μA short-circuit current, 122 mW/m² power density |
Georgia Inst Technol [57] | Arched TENG | Polydimethylsiloxane (PDMS), aluminum foil | Human motion joints | Oscilloscope, Current Amp | wireless sensor, mobile phone | 230 V open-circuit voltage, 15.5 μA/m² ampere density, 128 mW/cm3 volume energy density |
Kwangwoon University [58] | Nano-fiber | MXene () and PVDF composite | Foot, fabric | Electrometer, Force gauge, electrodynamic shaker | Low-power electronic equipment | 4.6 mW output power can be provided |
Hanyang University [59] | Rolling triboelectric nanogenerator | Metal layer, graphene nano-doped PDMS | back | Oscilloscope (TDS 2024C, Tektronix), Current Amp (DLPCA-200, Femto) | 40 red LED | 164 V open-circuit voltage, 10 μA short-circuit current |
Chung Hsing University [60] | Self-luminescing and energy harvesting triboelectric fiber | Elastic phosphorescent triboelectric composite | Arm, Sweater | HTC LX-103 luxmeter, Keithley 6514 SR570 | Lumines-cent fiber | 250 V open-circuit voltage, 80 μA short-circuit current, simultaneously emit long-lasting visible light (50 mcd m−2) |
Sungkyunkwan University [61] | Virus-blocking textile | Conductive PEDOT, PSS fabric | Mouth | electron microscope, multimeter (Donghwa electronics, DM-1010) | VBT | 259.6 μA short-circuit current, block 99.95% of SARS-CoV-2 in the air |
Research Institutions | Devices | Material and Structure | Body Parts | Experiment Apparatus | Load | Output Effect |
---|---|---|---|---|---|---|
Illinois Institute of Technology [71] | Double stator linear motor | Magnetized square magnet, laminated silicon steel, spiral spring | Sole of foot | Oscilloscope, voltage-current conversion amplifier | Sensing equipment | Power density: 8.5 mW/cm3 |
The Hong Kong Polytechnic University [72] | Trans rotating magnetic Gear (TRMG) and Axial Flux Permanent Magnet Generator (AFPM) | Ring magnet, Teflon tube, copper wire | Foot part | ADXL321 Biaxial accelerometer and oscilloscope | External resistance | Instantaneous output power: 6.8 W |
University of Southampton [70] | A micro electromagnetic generator | Four magnets, four magnets, a wound coil | Various parts of the human body | Not mentioned | External resistance | Power of 46 µW, voltage of 428 mV |
Beijing Institute of Technology [73] | Multipolar linear permanent magnet generator | Magnet wafers (NdFeB) and 3D-printed spacer | foot | PC-based data acquisition test bed, Oscilloscope | External resistance | The maximum output power is 20 mW |
Northwestern Polytechnical University [74] | Energy harvester based on the bending of the sole | Four-bar linkage, brushless DC electromagnetic generator | Sole of foot | Data acquisition equipment (DH8303, DONGHUA) | External resistance | Power density 0.43 mW/cm3 (4 km/h) |
Purdue University [75] | Electromagnetic magnetic levitation | Suspended magnetic net, fixed magnet, copper wire | Chest backpack | TIRA TV 51120 Electric shaking table, ADXL335 Accelerometer | External resistance | Average power 342 μW |
University College Cork, Ireland [76] | Human motion energy harvesting device based on electromagnetic effect | Ring magnet, Teflon tube, copper wire | Backpack | ADXL321 Biaxial accelerometer, XR440 data recorder | External resistance | Average power 0.3–2.46 mW |
Kwangwoon University [77] | Small electromagnetic energy harvester (EMEH) | Coil, compression spring, magnet | Wrist | Oscilloscope (TDS5052B), Accelerometer (MPU6500 3-axis accelerometer) | Smart phone, battery | Average power 203 μW |
Xi’an Jiaotong University [78] | Magnetic-spring based energy harvester | Hollow tube, N35 permanent magnets, magnetic stack | leg | Digital dynamometer, electromagnetic vibrator, oscilloscope (MSOX3052A) | External resistance | Maximum output power 10.66 mW (8 km/h) |
Xi’an Jiaotong University [79] | Array enhanced electromagnetic energy harvester for pendulum | White resin 3D printing, copper coil, magnet | Calves, elbows, neck | Power amplifier (E5874A), Oscilloscope (DSOX3014A) | Watches, sensors | Average power 0.38 mW, The mass power density 23 mW/g |
Shanghai University, Tongji University [80] | Wearable millimeter power generator | Piezoelectric ceramics, magnet bracket, spring, coil | Calves, wrists | Rectifier (MIC W04M), Oscilloscope | LED, lithium battery | Instantaneous power: 2.1 W |
Rutgers, The State University of New Jersey [81] | Human joint energy harvesting device based on pendulum system | White resin 3D printing, copper coil, magnet | Each motion joint of the human body | Oscilloscope | External resistance | Voltage: 0.54 V, Power: 13.7 μW |
Hunan Institute of Engineering [82] | Human-friendly biomechanical energy harvester | large gear, reset spring, small gear, pawls, and ratchet wheel | Waist | Not mentioned | 500 LED lights | Average power of 0.22 W while walking (4 Km/h) |
Lublin University of Technology [83] | Two-degrees-of-freedom electromagnetic energy harvester | Cylindrical tube, two moving magnets, a stationary coil | Not mentioned | Shaker, amplifier | External resistance | Bandwidth (60–1200 rad/s) and output power (0.2 W) |
Research Institutions | Devices | Material | Body Parts | Experiment Apparatus | Load | Output Effect |
---|---|---|---|---|---|---|
University of Udine [111] | Twin piezoelectric patches of trapezoidal structure | PZT-5A, Stainless steel | Foot | Oscilloscope | Load Resistance | Harvest power increased by about 25–30% |
Cranfield University [113] | Knee joint piezoelectric wearable energy harvesting device | T215-H4-303X PZT, Metal sheets | Knee joint | Laser Doppler Vibrometer (Polyetc CLV-2534) | Load Resistance | 1.0 mW average power |
Hanyang University [114] | Foot energy harvesting device | PZT-PZNM | Foot | Oscilloscope, Current Amp | 60 LED lights (WLST6030CWY) | 55 mW instantaneous power |
University at Buffalo [115] | A controlled bending structure to carry piezoelectric bimorph sheets | PZT-5A, Spring steel | Road, sole of shoe | Oscilloscope, Current Amp | Load Resistance | 42.3 mW instantaneous power |
Southern Cross University [116] | Piezoelectric energy harvesting device (PEH) | Metal cantilever beam, PZT | Lower leg, wrist | Oscillating Screen(APS-113), Accelerometer (Dytran 3305A2) | Load Resistance | The power peak is 80 μW |
Xi’an Jiaotong University [118] | Nonlinear piezoelectric body motion energy harvesting device | PZT-51, magnet | Lower leg | Accelerometer (CXL04GP3), Angular Transducer (BWD-VG100), Oscilloscope | Load Resistance | 77 μW average power |
University of Utah [119] | Limb-driven piezoelectric energy harvesting device | PZT-5H, Silicon Resin, iron | joints | Triaxial accelerometer, data logger, Oscilloscope (TDS 5052B) | Load Resistance | The average power generated in series is 175 µW |
University Brunei Darussalam [121] | Piezo-electromagnetic hybrid generator for sustainable wearable microelectronics (PEM-IEH) | PZT, Disc magnet, Polytetrafluo- roetylene, Spiral Spring | Foot | Power amplifier(Model RM–AT2900), Accelerometer (EVALADXL335Z), Oscilloscope (Model GOS 6112), | Load Resistance Capacitor | Charge 100 µF capacitors within about 10 min of jogging (up to 2.4 V voltage) |
University of Rijeka [122] | Watch-type wearable device (PEH) | PZT-5H | Wrist joints | Oscilloscope (DSO-X 2012A), 500 V Laser Vibrometer | Load Resistance | The power output is greater than 130 mW, and the average power output is greater than 3 mw |
Georgia Institute of Technology [125] | Fiber-based hybrid nanogenerator (FBHNG) | ZnO-NRs thin film, Ti thin film, PDMS | Elbow Joint | Oscilloscope, Current Amp | Commercial capacitor, LED | Instantaneous output power density: 42.6 and 10.2 mW/m2 |
Korea Institute of Science and Technology [128] | Flexible energy harvesting device | Polyimide, PVDF | Foot | Oscilloscope (DSOX3014A) | Diode chip, LED | Average voltage and current of 25 V and 20 µA respectively |
University of California [129] | Hand drive vibration power generation device | Fluorinated ethylene propylene(FEP), Al, electrode, Acrylic substrate | Hand | Keithley 6514 System, Current Amp (Stanford Research System SR570) | Calculator, MP3, smart wristband | Charge 220 μF commercial capacitors, up to 3 V |
Kyungpook National University [130] | f-TPEG | Piezoelectric (PE) poly(vinylidene fluoride-co-trifluoroethylene) thin film, thermoelectric (TE) | Finger | Oscilloscope, Current Amp, thermometer | Load Resistance | 8 V output voltage and the current pulse of 6 μA |
Daegu Gyeongbuk Institute of Science &Technology [131] | Ultrathin piezoelectric energy nano-generator (U-PENG) | PVDF, TrFE | Corners of eyes, neck | Semiconductor Characterization System(Keithley 4200-SCS), Oscilloscope | Load Resistance | The voltage and current are about 120 mV and 9.3 nA |
University of Jinan [132] | Inorganic piezoelectric thin film | Sm-doped Pb(Mg1/3Nb2/3)O3PbTiO3 (Sm:PMN-PT) | Motion joints | Oscilloscope, Current Amp | Sensor, mobile screen | Output voltage of about 6 V, a current density of 150 μA cm−2, and a voltage sensitivity of about 5.86 V N−1 |
Energy Harvesting Mode | Energy Harvesting Principle | Energy Harvesting Material | Advantages | Disadvantages |
---|---|---|---|---|
Friction type | Friction generation electricity | Kapton film, AgNW electrode, nail powder, tin disulfide nanosheets (SnS2-NSs), polydimethylsiloxane (PDMS) and conductive PEDOT. | High malleability, light weight, small size, embedded design, and high adaptability to human body | High impedance, output current in the µA, cannot be used to power most devices |
Electro- magnetic type | Electro- magnetic induction | Magnetized square magnet, ring magnet, copper wire, suspended magnetic net. | Simple structure, low impedance, and large output current, and can supply power for most small equipment | Large mass, large volume, mostly rigid materials, low wearing comfort |
Piezoelectric type | Piezoelectric effect | PZT-5A, T215-H4-303X Piezoelectric chip, PZT-PZNM, PVDF, ZnO-NRs film, Fluorinated ethylene propylene film, PMN-PT | Piezoelectric ceramic: simple structure, light weight, high output voltage; piezoelectric film: high ductility, higher fitness with human body and not easy to damage | Piezoelectric ceramic: easy to fatigue and damage; piezoelectric film: Low piezoelectric strain coefficient, low dielectric constant, low energy output |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Wei, Y.; Wang, X.; Zhai, K.; Ji, X. Study on Human Motion Energy Harvesting Devices: A Review. Machines 2023, 11, 977. https://doi.org/10.3390/machines11100977
Lin W, Wei Y, Wang X, Zhai K, Ji X. Study on Human Motion Energy Harvesting Devices: A Review. Machines. 2023; 11(10):977. https://doi.org/10.3390/machines11100977
Chicago/Turabian StyleLin, Wenzhou, Yuchen Wei, Xupeng Wang, Kangjia Zhai, and Xiaomin Ji. 2023. "Study on Human Motion Energy Harvesting Devices: A Review" Machines 11, no. 10: 977. https://doi.org/10.3390/machines11100977
APA StyleLin, W., Wei, Y., Wang, X., Zhai, K., & Ji, X. (2023). Study on Human Motion Energy Harvesting Devices: A Review. Machines, 11(10), 977. https://doi.org/10.3390/machines11100977