Display Line Defect Detection Method Based on Color Feature Fusion
Abstract
:1. Introduction
- (1)
- A novel display line defect detection method is proposed for the stable detection of line defects under multiple backgrounds.
- (2)
- A method of fusion salient color features is proposed to achieve background suppression of low-contrast defects and the enhancement of objects.
- (3)
- A salient color channel selection method is proposed, which realizes the salient color channel selection under multiple backgrounds.
2. Related Works
3. Methodology
3.1. Algorithm Architecture
3.2. Color Feature Extraction
3.3. Significant Color Channel Selection
3.4. Color Feature Fusion
4. Experimental Results
4.1. Experimental Setup
4.2. Line Defect Detection Results
4.3. Comparison of Different Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abd Al Rahman, M.; Mousavi, A. A review and analysis of automatic optical inspection and quality monitoring methods in electronics industry. IEEE Access 2020, 8, 183192–183271. [Google Scholar]
- Ming, W.; Shen, F.; Li, X.; Zhang, Z.; Du, J.; Chen, Z.; Cao, Y. A comprehensive review of defect detection in 3C glass components. Measurement 2020, 158, 107722. [Google Scholar] [CrossRef]
- Li, C.; Zhang, X.; Huang, Y.; Tang, C.; Fatikow, S. A novel algorithm for defect extraction and classification of mobile phone screen based on machine vision. Comput. Ind. Eng. 2020, 146, 106530. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zuo, C.; Xing, M. Defect detection of mobile phone screen based on improved difference image method. In Proceedings of the 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Shanghai, China, 21–24 November 2019. [Google Scholar]
- Ngo, C.; Park, Y.J.; Jung, J.; Hassan, R.U.; Seok, J. A new algorithm on the automatic TFT-LCD mura defects inspection based on an effective background reconstruction. J. Soc. Inf. Disp. 2017, 25, 737–752. [Google Scholar] [CrossRef]
- Yang, H.; Song, K.; Mei, S.; Yin, Z. An accurate mura defect vision inspection method using outlier-prejudging-based image background construction and region-gradient-based level set. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1704–1721. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, J. An automatic detection method of Mura defects for liquid crystal display. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019. [Google Scholar]
- Chen, L.-C.; Kuo, C.-C. Automatic TFT-LCD mura defect inspection using discrete cosine transform-based background filtering and ‘just noticeable difference’quantification strategies. Meas. Sci. Technol. 2007, 19, 015507. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, X.; Xiao, J. A cascaded Mura defect detection method based on mean shift and level set algorithm for active-matrix OLED display panel. J. Soc. Inf. Disp. 2019, 27, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xiao, J. A Region-Scalable Fitting Model Algorithm Combining Gray Level Difference of Sub-image for AMOLED Defect Detection. In Proceedings of the 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 18–20 August 2018. [Google Scholar]
- Lin, G.; Kong, L.; Liu, T.; Qiu, L.; Chen, X. An antagonistic training algorithm for TFT-LCD module mura defect detection. Signal Processing Image Commun. 2022, 107, 116791. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, R.; Huang, W.; Wei, P.; Yang, G.; Wang, Y. HMFCA-Net: Hierarchical multi-frequency based Channel attention net for mobile phone surface defect detection. Pattern Recognit. Lett. 2022, 153, 118–125. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, J.; Liu, H.; Zhou, Q.; Zhu, J.; Li, B. Deep-Learning-Enabled Automatic Optical Inspection for Module-Level Defects in LCD. IEEE Internet Things J. 2021, 9, 1122–1135. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chang, K.-H.; Meng, H.-M.; Chiu, H.-C. A Novel Multicategory Defect Detection Method Based on the Convolutional Neural Network Method for TFT-LCD Panels. Math. Probl. Eng. 2022, 2022, 6505372. [Google Scholar] [CrossRef]
- Ming, W.; Cao, C.; Zhang, G.; Zhang, H.; Zhang, F.; Jiang, Z.; Yuan, J. Application of Convolutional Neural Network in Defect Detection of 3C Products. IEEE Access 2021, 9, 135657–135674. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Dai, W. A two-stage multiscale residual attention network for light guide plate defect detection. IEEE Access 2020, 9, 2780–2792. [Google Scholar] [CrossRef]
- Pan, J.; Zeng, D.; Tan, Q.; Wu, Z.; Ren, Z. EU-Net: A novel semantic segmentation architecture for surface defect detection of mobile phone screens. IET Image Process. 2022, 2022, 6505372. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Jin, S.; Ji, C.; Yan, C.; Xing, J. TFT-LCD mura defect detection using DCT and the dual-γ piecewise exponential transform. Precis. Eng. 2018, 54, 371–378. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, S.; Wu, H.; Xiong, B.; Pan, Y. Liquid crystal display defects in multiple backgrounds with visual real-time detection. J. Soc. Inf. Disp. 2021, 29, 547–560. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, L. Saliency detection: A spectral residual approach. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Achanta, R.; Hemami, S.; Estrada, F.; Susstrunk, S. Frequency-tuned salient region detection. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Guo, C.; Ma, Q.; Zhang, L. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Li, J.; Levine, M.D.; An, X.; Xu, X.; He, H. Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 996–1010. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zheng, X. Fabric defect detection based on information entropy and frequency domain saliency. Vis. Comput. 2021, 37, 515–528. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.; Zeng, Q.; Lu, L. Application of printing defects detection based on visual saliency. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Cheng, M.-M.; Mitra, N.J.; Huang, X.; Torr, P.H.; Hu, S.-M. Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Shah, M. Visual attention detection in video sequences using spatiotemporal cues. In Proceedings of the 14th ACM International Conference on Multimedia, SantaBarbara, CA, USA, 23–27 October 2006. [Google Scholar]
- Guan, S.; Shi, H. Fabric defect detection based on the saliency map construction of target-driven feature. J. Text. Inst. 2018, 109, 1133–1142. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Shangwang, L.; Ming, L.; Wentao, M.; Guoqi, L. Improved HFT model for saliency detection. Comput. Eng. Des. 2015, 36, 2167–2173. [Google Scholar]
- Engel, S.; Zhang, X.; Wandell, B. Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 1997, 388, 68–71. [Google Scholar] [CrossRef]
- Goferman, S.; Zelnik-Manor, L.; Tal, A. Context-Aware Salient Detection. IEEE Trans Pattern Anal Mach Intell 2012, 34, 1915–1926. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Zhang, L.; Lu, H. Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 2013, 20, 637–640. [Google Scholar] [CrossRef]
- Bylinskii, Z.; Judd, T.; Oliva, A.; Torralba, A.; Durand, F. What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 740–757. [Google Scholar] [CrossRef] [Green Version]
Stability Defect | Change Defect | |
---|---|---|
TDR (%) | 96.49 | 90.77 |
FDR (%) | 86.49 | 89.48 |
Background | Measures | FT [22] | HC [27] | CA [33] | GR [18] | PQFT [23] | Ours |
---|---|---|---|---|---|---|---|
dark gray transition | NSS | 1.07 | 0.63 | 1.89 | 0.92 | 2.09 | 8.34 |
AUC | 0.80 | 0.21 | 0.92 | 0.80 | 0.911 | 0.99 | |
Time | 2.00 | 1.09 | 70.01 | 3.65 | 0.24 | 0.46 | |
light gray transition | NSS | 1.23 | 0.12 | 1.32 | 0.83 | 1.15 | 10.70 |
AUC | 0.80 | 0.53 | 0.90 | 0.74 | 0.79 | 0.99 | |
Time | 1.07 | 4.14 | 37.68 | 3.08 | 0.24 | 0.47 | |
cross test | NSS | 2.99 | 2.16 | 0.66 | 0.44 | 0.08 | 8.89 |
AUC | 0.98 | 0.94 | 0.77 | 0.57 | 0.53 | 0.99 | |
Time | 2.18 | 13.32 | 87.23 | 5.57 | 0.35 | 0.69 | |
checkerboard | NSS | 3.85 | 1.28 | 1.12 | 0.20 | 0.53 | 11.75 |
AUC | 0.99 | 0.82 | 0.98 | 0.82 | 0.65 | 0.99 | |
Time | 2.24 | 29.43 | 30.51 | 4.69 | 0.43 | 0.71 | |
white | NSS | 0.12 | 0.07 | 0.02 | 0.32 | 1.30 | 4.22 |
AUC | 0.75 | 0.85 | 0.76 | 0.50 | 0.95 | 0.99 | |
Time | 2.26 | 19.14 | 22.58 | 6.13 | 0.42 | 0.70 | |
gray | NSS | 3.89 | 1.91 | 0.96 | 3.02 | 0.41 | 9.09 |
AUC | 0.99 | 0.91 | 0.98 | 0.76 | 0.34 | 0.99 | |
Time | 1.34 | 10.85 | 126.12 | 5.39 | 0.44 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Chen, H.; Wang, Z.; Liu, B.; Shuai, L. Display Line Defect Detection Method Based on Color Feature Fusion. Machines 2022, 10, 723. https://doi.org/10.3390/machines10090723
Xie W, Chen H, Wang Z, Liu B, Shuai L. Display Line Defect Detection Method Based on Color Feature Fusion. Machines. 2022; 10(9):723. https://doi.org/10.3390/machines10090723
Chicago/Turabian StyleXie, Wenqiang, Huaixin Chen, Zhixi Wang, Biyuan Liu, and Lingyu Shuai. 2022. "Display Line Defect Detection Method Based on Color Feature Fusion" Machines 10, no. 9: 723. https://doi.org/10.3390/machines10090723
APA StyleXie, W., Chen, H., Wang, Z., Liu, B., & Shuai, L. (2022). Display Line Defect Detection Method Based on Color Feature Fusion. Machines, 10(9), 723. https://doi.org/10.3390/machines10090723