Physical Properties of Modified Polyphenylene Oxide as a Composite Material for Hydrogen Fuel Cell Stack Enclosure Suitable for Injection Molding
Abstract
:1. Introduction
2. Selection of an mPPO Capable of Substituting Metal Materials
2.1. Observation of Characteristics According to PA66/PPO Content Ratio
2.1.1. Test Results of Tensile Strength
2.1.2. Test Results of Impact Strength
2.1.3. Test Results of the MFI
2.1.4. Test Results of Pyrolysis Temperature
2.2. Determination of Samples Capable of Substituting Metal Materials
3. Injection Molding Analysis
3.1. Specimen Modeling and Injection Molding Conditions
3.2. Physical Property Data Required for Injection Molding Analysis
3.2.1. Physical Property Data Calculation and Experiments on Mechanical Properties
3.2.2. Experiment and Calculation of Physical Property Data Regarding Flow Characteristics
3.2.3. Calculation of and Experiments on Thermal Properties
3.3. Orthogonal Array in the DOE
4. Injection Molding Analysis
4.1. Process Conditions
4.2. DOE Results
4.3. Results Applying the SN Ratio
4.4. Suggestion of Suitable mPPO
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.H.; Kim, N.C.; Kim, Y.T.; Nam, S.W.; Kim, Y.J.; Kim, J.H. Preparation and characteristics of poly (phenylene ether)s in various reaction conditions. Polymer 2011, 35, 244–248. [Google Scholar]
- Son, Y.G. The Prediction of Phase Morphology of Injection Molded Polymer Blends. Elastomers Compos. 2004, 39, 193–208. [Google Scholar]
- Won, H.J.; Seong, D.G.; Lee, J.W.; Um, M.K. A study on the effect of fiber orientation on impact strength and thermal expansion behavior of carbon fiber reinforced PA6/PPO composites. Compos. Res. 2014, 27, 52–58. [Google Scholar] [CrossRef]
- Chandra, R.; Mishra, S.; Kumar, P.; Rajabi, L. Photo-oxidative degradation of PPO/PET blends. Die Angew. Makromol. Chem. Appl. Macromol. Chem. Phys. 1994, 214, 1–9. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lee, S.K.; Kim, J.H.; Yoon, K.H. Electrical and mechanical properties of PA66/ppe blend containing MWCNT. Polymer-Korea 2019, 43, 331–336. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H. Effect of Mixing Protocol on the Phase Structure of Nylon/PPE/Graphene Oxide Composites. Polymer-Korea 2017, 41, 804–810. [Google Scholar] [CrossRef]
- Habaue, S.; Ito, R.; Okumura, K.; Takamushi, Y. Oxidative Coupling Copolymerization of 2, 6-Dimethylphenol and Dihydroxynaphthalene Affording Poly (phenylene oxide) Derivatives. J. Polym. 2015, 2015, 478729. [Google Scholar] [CrossRef]
- Ahn, S.; Lee, J.C.; Kim, K.Y. Preparation and Characterization of Glass-Fiber-Reinforced Modified Polyphenylene Oxide by a Direct Fiber Feeding Extrusion Process. Appl. Sci. 2021, 11, 10266. [Google Scholar] [CrossRef]
- Choi, K.Y.; Yi, M.H.; Shim, S.Y. The Status and Prospect of MPPO. Polym. Sci. Technol. 1990, 1, 153–161. [Google Scholar]
- Liu, Y.; Peng, H.; Yao, X.; Mao, M.; Song, K.; Lin, H. Study on properties of ultra-low dielectric loss mPPO/MTCLT composites prepared by injection molding. J. Adv. Dielectr. 2022, 12, 2250004. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.; Gu, J.; Wang, D.; Qu, C. Preparation of high performance adhesives matrix based on epoxy resin modified by bis-hydroxy terminated polyphenylene oxide. J. Adhes. Sci. Technol. 2018, 32, 1224–1238. [Google Scholar] [CrossRef]
- Xie, X.L.; Tang, C.Y.; Zhou, X.P.; Li, R.K.Y.; Yu, Z.Z.; Zhang, Q.X.; Mai, Y.W. Enhanced interfacial adhesion between PPO and glass beads in composites by surface modification of glass beads via in situ polymerization and copolymerization. Chem. Mater. 2004, 16, 133–138. [Google Scholar] [CrossRef]
- Lee, S.C.; Kim, J.W.; Yoon, S.I. Injection Molding Analysis for Development of Torque Roll Engine Mount Module using Composite Materials. In Proceedings of the KAIS Spring Conference, Jeongseon, Korea, 22–23 May 2015. [Google Scholar]
- Jeong, H.J.; Kim, S.H.; Cho, S.W.; Jeong, S.W.; Kwon, I.J. A Study on the Optimization of Injection Molding Process for Automotive Parts Using Nanocarbon Reinforced Composite Materials. In Proceedings of the KSME Conference, Jeju, Korea, 28–30 April 2021. [Google Scholar]
- Choi, M.J.; Cho, J.M.; Choi, Y.H.; Choi, M.H.; Lee, C.S.; Sung, H.K.; Lee, K.S.; Park, K.H.; Hwang, S.J. Development of Paint-free Metallic Plastic Material for Automotive Parts. Korean Chem. Eng. Res. 2022, 60, 295–299. [Google Scholar]
- Idayu, N.; Md Ali, M.A.; Kasim, M.S.; Abdul Aziz, M.S.; Raja Abdullah, R.I.; Sulaiman, M.A. Flow analysis of three plate family injection mould using moldflow software analysis. In Proceedings of the 2nd Symposium on Intelligent Manufacturing and Mechatronics, Melaka, Malaysia, 8 July 2019. [Google Scholar]
- Choi, G. Engineering Plastic. Polym. Sci. Technol. 2009, 20, 3–7. [Google Scholar]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/75824.html (accessed on 20 June 2019).
- ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Molding and Extrusion Plastics. ISO: Geneva, Switzerland, 2012. Available online: https://www.iso.org/standard/56046.html (accessed on 20 June 2022).
- ISO 179-2:2020; Plastics—Determination of Charpy Impact Properties—Part 2: Instrumented Impact Test. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/75825.html (accessed on 20 June 2022).
- Shangguan, Y.; Chen, F.; Yang, J.; Jia, E.; Zheng, Q. A new approach to fabricate polypropylene alloy with excellent low-temperature toughness and balanced toughness-rigidity through unmatched thermal expansion coefficients between components. Polymer 2017, 112, 318–324. [Google Scholar] [CrossRef]
- ISO 1133-1:2011; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics—Part 1: Standard Method. ISO: Geneva, Switzerland, 2011. Available online: https://www.iso.org/standard/44273.html (accessed on 20 June 2022).
- Alexy, P.; Košıková, B.; Podstránska, G. The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 2020, 41, 4901–4908. [Google Scholar] [CrossRef]
- Pivsa-Art, W.; Pavasupree, S.; Narongchai, O.; Insuan, U.; Jailak, P.; Pivsa-Art, S. Preparation of Polymer Blends between Poly (L-lactic acid), Poly (butylene succinate-co-adipate) and Poly (butylene adipate-co-terephthalate) for Blow Film Industrial Application. Energy Procedia 2011, 9, 581–588. [Google Scholar] [CrossRef]
- ISO 11358-1:2014; Plastics—Thermogravimetry (TG) of Polymers—Part 1: General Principles. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/59710.html (accessed on 20 July 2022).
- Lee, S.H.; Kim, M.Y. The Effects of Orthogonal Ribs on Warpage and CAE Analysis. In Proceedings of the KSME Conference, Pyeongchang, Korea, 25–27 May 2005. [Google Scholar]
- Lee, M.; Kim, H.; Lyu, M.Y. A study on the warpage of glass fiber reinforced plastics for part design and operation condition: Part 1. Amorphous plastics. Polymer 2012, 36, 555–563. [Google Scholar]
- AUTODESK Moldflow-Plastic Injection and Compression Mold Simulation for Design and Manufacturing. Available online: https://www.autodesk.com/products/moldflow/overview (accessed on 23 July 2022).
Content | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
PA66 | 20 wt% | 30 wt% | 40 wt% | 50 wt% | 60 wt% | 70 wt% | 80 wt% |
PPO | 80 wt% | 70 wt% | 60 wt% | 50 wt% | 40 wt% | 30 wt% | 20 wt% |
Description | Value |
---|---|
Force capacity | 10 kN |
Crosshead travel | 1172 mm |
Vertical test space | 1242 mm |
Horizontal test space | 420 mm |
Maximum speed | 508 mm/min |
Minimum speed | 0.05 mm/min |
Maximum return speed | 610 mm/min |
Footprint dimensions (h ∗ w ∗ d) | 1610 ∗ 760 ∗ 710 mm |
Position control resolution | 9.9 mm |
Frame axial stiffness | 38 kN/mm |
Maximum force at full speed | 10 kN |
Maximum speed at full force | 508 mm/min |
Weight | 122 kg |
Maximum power requirement | 730 VA |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Tensile Strength (MPa) (Standard deviation) | 42 (1.7) | 53 (2.4) | 53 (4.0) | 63 (2.9) | 63 (1.0) | 65 (0.7) | 66 (2.3) |
Description | Value |
---|---|
Pendulum capacity | 2.82 J |
Pendulum capacity with low blow | 2.75 to 2 J |
Pendulum capacity with added weights | up to 25 J |
Drop height | 0.61 m |
Impact velocity | 3.46 m/s |
Dimensions (Width ∗ Depth ∗ Height) | 660 ∗ 380 ∗ 840 mm |
Weight | 110 kg |
Spec. | Value |
---|---|
Length | 80 mm |
Width | 10 mm |
Thickness | 4 mm |
Notch angle | 45° |
Notch radius | 0.25 mm |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Impact Strength (MPa) (Standard deviation) | 57.7 (1.5) | 32.5 (1.6) | 24.5 (0.4) | 128.6 (3.6) | 153.1 (3.7) | 144.3 (2.5) | 77.6 (4.4) |
Description | Value |
---|---|
Operating temperature | max 400 °C |
Temperature control | ±0.1 °C |
Spatial temperature variation | ±0.1 °C |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Melt Flow Index (g/min) (Standard deviation) | 0.7 (15.1) | 1.0 (10.3) | 4.5 (8.2) | 1.8 (9.4) | 15.2 (3.2) | 14.3 (4.1) | 39.0 (3.1) |
Description | Value |
---|---|
Temperature range | 23~300 °C |
Cool down rate | 50 or 120 °C per hour |
Dimensions (Width ∗ Depth ∗ Height) | 813 ∗ 635 ∗ 585 mm |
Weight | 87 kg |
Required utilities | 11 L |
Water supply for cooldown | |
Dry air filtered to 50 microns at 40 psi/min |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Thermal decompositiontemperature (°C) | 453 | 456 | 454 | 453 | 452 | 452 | 446 |
Description | Value (mm) |
---|---|
Width | 120 |
Depth | 100 |
Height | 120 |
Thickness | 4 |
Rib height | 4 |
Rib thickness | 4 |
Mechanical Property | Fluidity | Thermal Property |
---|---|---|
Elastic modulus | Viscosity | Specific heat () |
Shear modulus | pvT model | Thermal conductivity |
Poisson’s rate’ | Melt temperature | - |
Transversely isotropic Coefficient of Linear Thermal Expansion | Solid Density | - |
No. | 4 | 5 | 6 | 7 |
---|---|---|---|---|
Elastic modulus (MPa) | 2326 | 2660 | 2877 | 3056 |
Shear modulus (MPa) | 830.7 | 950 | 1027 | 1091 |
Poisson’s rate | 0.4 | 0.4 | 0.4 | 0.4 |
Description | Value |
---|---|
Thermal range | −90~800 °C |
Temperature programmer | 0.1~60 °C/min |
Isothermal Stability | ±0.4 °C |
Maximum sample size | up to 10 mm (in length) |
Furnace Winding | Ni-chrome |
Furnace movement | by electric motor |
No. | Coefficient (1/°C) | |
---|---|---|
Horizontal | Vertical | |
4 | 4.73 × 10−8 | 4.74 × 10−8 |
5 | 4.74 × 10−8 | 4.77 × 10−8 |
6 | 4.75 × 10−8 | 4.78 × 10−8 |
7 | 2.04 × 10−7 | 2.02 × 10−7 |
Description | Value |
---|---|
Temperature range | room temperature~725 °C |
Temperature accuracy | ±0.1 °C |
Temperature precision | ±0.05 °C |
Flow accuracy | 1.00% |
Description | 4 | 5 | 6 | 7 |
---|---|---|---|---|
Melt temperature (°C) | 252.91 | 252.79 | 253.68 | 249.38 |
Coefficients | Value | Coefficients | Value |
---|---|---|---|
b5 | 521.15 | b1s | 0.000997 |
b6 | 9.00 × 10−8 | b2s | 4.16 × 10−7 |
b1m | 0.001059 | b3s | 1.12 × 108 |
b2m | 7.73 × 10−7 | b4s | 0.004603 |
b3m | 9.25 × 107 | b7 | 4.93 × 10−5 |
b4m | 0.006027 | b8 | 0.0326 |
- | - | b9 | 3.12 × 10−9 |
Coefficients | Value | Coefficients | Value |
---|---|---|---|
b5 | 520.15 | b1s | 0.000996 |
b6 | 9.25 × 10−8 | b2s | 4.47 × 10−7 |
b1m | 0.00106 | b3s | 1.32 × 108 |
b2m | 7.79 × 10−7 | b4s | 0.004261 |
b3m | 9.52 ×107 | b7 | 4.99 × 10−5 |
b4m | 0.006158 | b8 | 0.037 |
- | - | b9 | 5.99 × 10−9 |
Coefficients | Value | Coefficients | Value |
---|---|---|---|
b5 | 520.15 | b1s | 0.000996 |
b6 | 9.25 × 10−8 | b2s | 4.77 × 10−7 |
b1m | 0.001063 | b3s | 1.19 × 108 |
b2m | 7.85 × 10−7 | b4s | 0.004763 |
b3m | 9.75 × 107 | b7 | 5.05 × 10−5 |
b4m | 0.00629 | b8 | 0.0274 |
- | - | b9 | 3.30 × 10−9 |
Coefficients | Value | Coefficients | Value |
---|---|---|---|
b5 | 520.15 | b1s | 0.000995 |
b6 | 9.25 × 10−8 | b2s | 5.08 × 10−7 |
b1m | 0.001065 | b3s | 1.16 × 108 |
b2m | 7.91 × 10−7 | b4s | 0.004961 |
b3m | 9.98 × 107 | b7 | 5.11 × 10−5 |
b4m | 0.006426 | b8 | 0.0282 |
- | - | b9 | 2.56 × 10−9 |
Description | Value |
---|---|
Temperature range | −100~500 °C |
Maximum output | 10 J/pulse |
Thermal diffusivity measurement range | 0.01~1000 mm2/s |
Thermal conductivity measurement range | 0.01~2000 W/mK |
Transverse | Length | Thickness |
---|---|---|
10 mm | 10 mm | 1 mm |
Factor | Description | Level | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
A | Mechanical property | Elastic Modulus (MPa) | 2326 | 2660 | 2877 | 3056 | |
Shear Modulus (MPa) | 830.7 | 950 | 1027 | 1091 | |||
CLTE (1/°C) | Horizontal | 0.0473 | 0.0477 | 0.0475 | 0.204 | ||
Vertical | 0.0474 | 0.0469 | 0.0478 | 0.202 | |||
B | Fluidity | Viscosity | TS-4 | TS-5 | TS-6 | TS-7 | |
pvT | TS-4 | TS-5 | TS-6 | TS-7 | |||
Melt temperature (°C) | 252.91 | 252.79 | 253.68 | 249.38 | |||
Solid Density (g/cm3) | 1.087 | 1.088 | 1.101 | 1.106 | |||
Melt density (g/cm3) | 0.921 | 0.918 | 0.915 | 0.912 | |||
C | Thermal property | Specific Heat (J/kg-°C) | TS-4 | TS-5 | TS-6 | TS-7 | |
Thermal conductivity (W/m-°C) | TS-4 | TS-5 | TS-6 | TS-7 |
Simulation No. | A | B | C |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 1 | 4 | 4 |
5 | 2 | 1 | 2 |
6 | 2 | 2 | 3 |
7 | 2 | 3 | 4 |
8 | 2 | 4 | 1 |
9 | 3 | 1 | 3 |
10 | 3 | 2 | 4 |
11 | 3 | 3 | 1 |
12 | 3 | 4 | 2 |
13 | 4 | 1 | 4 |
14 | 4 | 2 | 1 |
15 | 4 | 3 | 2 |
16 | 4 | 4 | 3 |
Description | Value | |
---|---|---|
Melt temperature | 280 °C | |
Max. injection pressure | 180 MPa | |
Packing pressure | 0 s | 80 MPa |
5 s | 80 MPa | |
10 s | 60 MPa |
Case No. | Fill Time (s) | Max. Deflection (mm) | Time to Reach Ejection Temperature (s) |
---|---|---|---|
1 | 6.517 | 0.1742 | 53.47 |
2 | 5.636 | 0.003 | 53.9 |
3 | 9.654 | 0.0149 | 52.3 |
4 | 7.429 | 0.0226 | 49.25 |
5 | 9.842 | 0.0016 | 54.97 |
6 | 5.633 | 0.0029 | 51.83 |
7 | 6.747 | 0.0137 | 50.52 |
8 | 7.41 | 0.0189 | 49.64 |
9 | 7.975 | 0.0024 | 50.13 |
10 | 5.647 | 0.003 | 49.91 |
11 | 8.135 | 0.0112 | 53.96 |
12 | 8.735 | 0.0166 | 50.49 |
13 | 8.991 | 0.009 | 49.96 |
14 | 5.642 | 0.0064 | 53.41 |
15 | 9.791 | 0.0073 | 54.43 |
16 | 7.422 | 0.0129 | 54.53 |
Case No. | Fill Time (s) | Fill Time SN Ratio |
---|---|---|
1 | 6.517 | −16.281 |
2 | 5.636 | −15.0194 |
3 | 9.654 | −19.6941 |
4 | 7.429 | −17.4186 |
5 | 9.842 | −19.8617 |
6 | 5.633 | −15.0148 |
7 | 6.747 | −16.5822 |
8 | 7.41 | −17.3964 |
9 | 7.975 | −18.0346 |
10 | 5.647 | −15.0364 |
11 | 8.135 | −18.2072 |
12 | 8.735 | −18.8253 |
13 | 8.991 | −19.0762 |
14 | 5.642 | −15.0287 |
15 | 9.791 | −19.8165 |
16 | 7.422 | −17.4104 |
Case No. | Max. Deflection (mm) | Max. Deflection SN Ratio |
---|---|---|
1 | 0.1742 | 15.179 |
2 | 0.003 | 50.4576 |
3 | 0.0149 | 36.5363 |
4 | 0.0226 | 32.9178 |
5 | 0.0016 | 55.9176 |
6 | 0.0029 | 50.752 |
7 | 0.0137 | 37.2656 |
8 | 0.0189 | 34.4708 |
9 | 0.0024 | 52.3958 |
10 | 0.003 | 50.4576 |
11 | 0.0112 | 39.0156 |
12 | 0.0166 | 35.5978 |
13 | 0.009 | 40.9151 |
14 | 0.0064 | 43.8764 |
15 | 0.0073 | 42.7335 |
16 | 0.0129 | 37.7882 |
Case No. | Time to Reach Ejection Temperature (s) | Time to Reach Ejection Temperature SN Ratio |
---|---|---|
1 | 53.47 | −34.5622 |
2 | 53.9 | −34.6318 |
3 | 52.3 | −34.37 |
4 | 49.25 | −33.8481 |
5 | 54.97 | −34.8025 |
6 | 49.96 | −33.9724 |
7 | 50.52 | −34.0693 |
8 | 49.64 | −33.9166 |
9 | 50.13 | −34.002 |
10 | 49.91 | −33.9638 |
11 | 53.96 | −34.6414 |
12 | 50.49 | −34.0641 |
13 | 51.83 | −34.2916 |
14 | 53.41 | −34.5525 |
15 | 54.43 | −34.7168 |
16 | 54.53 | −34.7327 |
Case No. | Fill Time (s) | Max. Deflection (mm) | Time to Reach Ejection Temperature (s) |
---|---|---|---|
2 | 5.636 | 0.003 | 53.9 |
6 | 5.633 | 0.0029 | 49.96 |
10 | 5.647 | 0.003 | 49.91 |
14 | 5.642 | 0.0064 | 53.41 |
Case No. | Fill Time | Max. Deflection | Time to Reach Ejection Temperature |
---|---|---|---|
2 | −15.0194 | 50.4576 | −34.6318 |
6 | −15.0148 | 50.752 | −33.9724 |
10 | −15.0364 | 50.4576 | −33.9638 |
14 | −15.0287 | 43.8764 | −34.5525 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-L.; Kim, B.-J.; Lee, S.-B. Physical Properties of Modified Polyphenylene Oxide as a Composite Material for Hydrogen Fuel Cell Stack Enclosure Suitable for Injection Molding. Machines 2022, 10, 625. https://doi.org/10.3390/machines10080625
Lee S-L, Kim B-J, Lee S-B. Physical Properties of Modified Polyphenylene Oxide as a Composite Material for Hydrogen Fuel Cell Stack Enclosure Suitable for Injection Molding. Machines. 2022; 10(8):625. https://doi.org/10.3390/machines10080625
Chicago/Turabian StyleLee, Soo-Lim, Bong-Ju Kim, and Seon-Bong Lee. 2022. "Physical Properties of Modified Polyphenylene Oxide as a Composite Material for Hydrogen Fuel Cell Stack Enclosure Suitable for Injection Molding" Machines 10, no. 8: 625. https://doi.org/10.3390/machines10080625
APA StyleLee, S. -L., Kim, B. -J., & Lee, S. -B. (2022). Physical Properties of Modified Polyphenylene Oxide as a Composite Material for Hydrogen Fuel Cell Stack Enclosure Suitable for Injection Molding. Machines, 10(8), 625. https://doi.org/10.3390/machines10080625