A Transferable Thruster Fault Diagnosis Approach for Autonomous Underwater Vehicle under Different Working Conditions with Insufficient Labeled Training Data
Abstract
:1. Introduction
2. TFE Approach
2.1. Conventional SPWVD
2.2. Proposed TFE Approach
- (1)
- The IPSE-based time boundary identification
- (2)
- The STNED-based frequency boundary recognition
- (3)
- The sum operation-based fault feature extraction
3. The TSVDD Approach
3.1. Conventional SVDD
- (1)
- Construct one-class classifiers
- (2)
- Establish the whole classifier
- (3)
- Testing samples classification
3.2. Proposed TSVDD Method
- (1)
- The RCQFFV-based range normalization of different kinds of fault features
- (2)
- The MSN-based range normalization under different working conditions
- (3)
- The LSP-based unknown normalization scale estimation
- (4)
- The SVDD-based classification of fault samples
4. Experimental Results and Discussion
4.1. Experimental Set up and Data
4.2. Experimental Validation of the TFE Method
- (1)
- Experimental validation of the IPSE
- (2)
- Experimental validation of the STNED
- (3)
- Experimental validation of the TFE method
4.3. Experimental Validation of the TSVDD Method
- (1)
- Experimental validation of the RCQFFV
- (2)
- Experimental validation of the MSN
- (3)
- Experimental validation of the LSP
- (4)
- Experimental validation of the TSVDD
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Daqi, Z.; Huapeng, Z.; Chenxia, L. Tracking controller based on model prediction control for remotely operated vehicle for thruster fault. J. Mar. Sci. Technol. 2022, 27, 840–855. [Google Scholar]
- Yeo, S.J.; Choi, W.S.; Hong, S.Y.; Song, J.H. Enhanced convolutional neural network for in Situ AUV thruster health monitoring using acoustic signals. Sensors 2022, 22, 7073. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Li, X.G.; Wang, H.; Zhai, P.; Lu, H. Fuzzy linear extended states observer-based iteration learning fault-tolerant control for autonomous underwater vehicle trajectory-tracking system. IET Control Theory Appl. 2022. [Google Scholar] [CrossRef]
- García-Molleda, D.; Sandoval, J.; Coria, L.N.; Bugarin, E. Energy-based trajectory tracking control for underwater vehicles subject to disturbances with actuator partial faults and bounded input. Ocean Eng. 2022, 248, 110666. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, T.; Liu, B.; Ran, G. Thruster fault diagnostics and fault tolerant control for autonomous underwater vehicle with ocean currents. Machines 2022, 10, 582. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Huang, H. Adaptive neural networks trajectory tracking control for autonomous underwater helicopters with prescribed performance. Ocean Eng. 2022, 264, 112519. [Google Scholar] [CrossRef]
- Cho, H.; Choi, H.-S.; Kim, H.-J.; Nam, K.S.; Ryu, J.D.; Ha, K.N. Feature selection for unmanned surface vehicle fault diagnosis research and experimental verification. J. Soc. Control Robot Syst. 2022, 28, 542–550. [Google Scholar] [CrossRef]
- Chan, T.K.; Chin, C.S. Health stages diagnostics of underwater thruster using sound features with imbalanced dataset. Neural Comput. Appl. 2019, 31, 5767–5782. [Google Scholar] [CrossRef]
- Capocci, R.; Omerdic, E.; Dooly, G.; Toal, D. Fault-tolerant control for ROVs using control reallocation and power isolation. J. Mar. Sci. Eng. 2018, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, C.H.; Cardozo, D.I.; Reginatto, R.; De Pieri, E.R. Bank of controllers and virtual thrusters for fault-tolerant control of autonomous underwater vehicles. Ocean Eng. 2016, 121, 210–223. [Google Scholar] [CrossRef]
- Luca, P.; Marco, P.; Benedetto, A. A robust propulsion layout for underwater vehicles with enhanced manoeuvrability and reliability features. Proc. Inst. Mech. Eng. Part M-J. Eng. Marit. Environ. 2018, 232, 358–376. [Google Scholar]
- Hao, L.Y.; Zhang, H.; Guo, G.; Li, H. Quantized sliding mode control of unmanned marine vehicles: Various thruster faults tolerated with a unified model. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2012–2026. [Google Scholar] [CrossRef]
- Zhao, B.; Skjetne, R.; Blanke, M.; Dukan, F. Particle filter for fault diagnosis and robust navigation of underwater robot. IEEE Trans. Control Syst. Technol. 2014, 22, 2399–2407. [Google Scholar] [CrossRef] [Green Version]
- Chaos, D.; Moreno-Salinas, D.; Aranda, J. Fault-tolerant control for AUVs using a single thruster. IEEE Access 2022, 10, 22123–22139. [Google Scholar] [CrossRef]
- Huang, F.; Xu, J.; Yin, L.; Wu, D.; Cui, Y.; Yan, Z.; Chen, T. A general motion control architecture for an autonomous underwater vehicle with actuator faults and unknown disturbances through deep reinforcement learning. Ocean Eng. 2022, 263, 112424. [Google Scholar] [CrossRef]
- Liu, F.; Tang, H.; Qin, Y.; Duan, C.; Luo, J.; Pu, H. Review on fault diagnosis of unmanned underwater vehicles. Ocean Eng. 2022, 243, 110290. [Google Scholar] [CrossRef]
- Chu, Z.; Gu, Z.; Li, Z.; Chen, Y.; Zhang, M. A fault diagnostic approach based on PSO-HMM for underwater thrusters. Math. Biosci. Eng. 2022, 19, 12617–12631. [Google Scholar] [CrossRef]
- Lei, Y.; Jia, F.; Kong, D.; Lin, J.; Xing, S. Opportunities and challenges of machinery intelligent fault diagnosis in big data era. J. Mech. Eng. 2018, 54, 94–104. [Google Scholar] [CrossRef]
- Raanan, B.Y.; Bellingham, J.; Zhang, Y.; Kemp, M.; Kieft, B.; Singh, H.; Girdhar, Y. Detection of unanticipated faults for autonomous underwater vehicles using online topic models. Field Robot. 2018, 35, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, G.; Wan, L. Sensor fault diagnosis for underwater robots. In Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; Volume 12, pp. 254–259. [Google Scholar]
- Sun, Y.S.; Ran, X.R.; Li, Y.M.; Zhang, G.C.; Zhang, Y.H. Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles. Int. J. Nav. Archit. Ocean Eng. 2016, 8, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Elhanaoui, A.; Aassif, E.; Maze, G.; Décultot, D. Time-frequency analysis to a particular type of scattering problems involving metallic-polymer tubing structures. Ultrasonics 2018, 82, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Abed, W.; Sharma, S.K.; Sutton, R.; Khan, A. An unmanned marine vehicle thruster fault diagnosis scheme based OFNDA. J. Mar. Eng. Technol. 2017, 16, 37–44. [Google Scholar] [CrossRef]
- Jiang, Y.; Feng, C.; He, B.; Guo, J.; Wang, D.; Lv, P. Actuator fault diagnosis in autonomous underwater vehicle based on Neural Network. Sens. Actuators A Phys. 2021, 324, 112668. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Ma, Z. A signal decomposition method for ultrasonic guided wave generated from debonding combining smoothed pseudo Wigner-Ville distribution and Vold–Kalman filter order tracking. Shock Vib. 2017, 2017, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, S.; Zhu, P.; Yu, J.; Li, S. Extraction of visual texture features of seabed sediments using an SVDD approach. Ocean Eng. 2017, 142, 501–506. [Google Scholar] [CrossRef]
Working Condition | Surge Speed | Sample Type | 0% | 10% | 20% | 30% | 40% |
---|---|---|---|---|---|---|---|
A | 0.2 m/s | Training (number) | 50 | 50 | 50 | 50 | 50 |
Testing (number) | 50 | 50 | 50 | 50 | 50 | ||
B | 0.3 m/s | Training | 50 | 50 | 50 | 50 | 50 |
Testing | 50 | 50 | 50 | 50 | 50 | ||
C | 0.4 m/s | Training | 50 | 50 | 50 | 50 | 50 |
Testing | 50 | 50 | 50 | 50 | 50 | ||
D | 0.5 m/s | Training | 50 | 50 | 50 | 50 | 50 |
Testing | 50 | 50 | 50 | 50 | 50 |
Case | SVDD | SVDD+RCQFFV | SVDD+RCQFFV+MSN | Proposed TSVDD |
---|---|---|---|---|
A→A | 100 | 100 | 100 | 100 |
B→B | 100 | 100 | 100 | 100 |
C→C | 100 | 100 | 100 | 100 |
D→D | 100 | 100 | 100 | 100 |
A→B① | 28.4 | 37.6 | 37.6 (U) | 37.6 (U) |
A→B② | 71.6 (B) | 71.6 (B) | ||
A→B③ | 20.0 (C) | 65.2 (C) | ||
A→B④ | 20.0 (D) | 63.2 (D) | ||
B→A① | 40.0 | 31.2 | 31.2 (U) | 31.2 (U) |
B→A② | 73.2 (A) | 73.2 (A) | ||
B→A③ | 20.0 (C) | 62.0 (C) | ||
B→A④ | 20.0 (D) | 67.2 (D) | ||
A→C① | 24.8 | 28.8 | 28.8 (U) | 28.8 (U) |
A→C② | 80.4 (C) | 80.4 (C) | ||
A→C③ | 40.0 (B) | 72.0 (B) | ||
A→C④ | 20.0 (D) | 67.2 (D) | ||
C→A① | 23.2 | 28.0 | 28.0 (U) | 28.0 (U) |
C→A② | 79.2 (A) | 79.2 (A) | ||
C→A③ | 40.0 (B) | 75.2 (B) | ||
C→A④ | 20.0 (D) | 74.8 (D) | ||
A→D① | 26.0 | 24.0 | 24.0 (U) | 24.0 (U) |
A→D② | 80.4 (D) | 80.4 (D) | ||
A→D③ | 54.4 (B) | 74.4 (B) | ||
A→D④ | 39.6 (C) | 78.0 (C) | ||
D→A① | 24.0 | 26.0 | 26.0 (U) | 26.0 (U) |
D→A② | 76.0 (A) | 76.0 (A) | ||
D→A③ | 24.8 (B) | 68.0 (B) | ||
D→A④ | 26.4 (C) | 64.4 (C) | ||
B→C① | 36.0 | 35.6 | 35.6 (U) | 35.6 (U) |
B→C② | 81.2 (C) | 81.2 (C) | ||
B→C③ | 32.8 (A) | 75.6 (A) | ||
B→C④ | 40.0 (D) | 76.4 (D) | ||
C→B① | 41.2 | 38.8 | 38.8 (U) | 38.8 (U) |
C→B② | 80.8 (B) | 80.8 (B) | ||
C→B③ | 31.6 (A) | 76.4 (A) | ||
C→B④ | 20.0 (D) | 74.4 (D) | ||
B→D① | 34.0 | 30.8 | 30.8 (U) | 30.8 (U) |
B→D② | 78.8 (D) | 78.8 (D) | ||
B→D③ | 28.4 (A) | 72.4 (A) | ||
B→D④ | 35.6 (C) | 71.6 (C) | ||
D→B① | 32.0 | 29.2 | 29.2 (U) | 29.2 (U) |
D→B② | 68.0 (B) | 68.0 (B) | ||
D→B③ | 20.0 (A) | 63.2 (A) | ||
D→B④ | 20.0 (C) | 64.0 (C) | ||
C→D① | 38.0 | 26.4 | 26.4 (U) | 26.4 (U) |
C→D② | 75.6 (D) | 75.6 (D) | ||
C→D③ | 21.2 (A) | 58.8 (A) | ||
C→D④ | 32.8 (B) | 64.0 (B) | ||
D→C① | 26.0 | 28.0 | 28.0 (U) | 28.0 (U) |
D→C② | 70.4 (C) | 70.4 (C) | ||
D→C③ | 19.6 (A) | 58.0 (A) | ||
D→C④ | 38.8 (B) | 60.4 (B) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, B.; Wang, Z.; Zhang, M.; Jin, Z.; Liu, X. A Transferable Thruster Fault Diagnosis Approach for Autonomous Underwater Vehicle under Different Working Conditions with Insufficient Labeled Training Data. Machines 2022, 10, 1236. https://doi.org/10.3390/machines10121236
Yin B, Wang Z, Zhang M, Jin Z, Liu X. A Transferable Thruster Fault Diagnosis Approach for Autonomous Underwater Vehicle under Different Working Conditions with Insufficient Labeled Training Data. Machines. 2022; 10(12):1236. https://doi.org/10.3390/machines10121236
Chicago/Turabian StyleYin, Baoji, Ziwei Wang, Mingjun Zhang, Zhikun Jin, and Xing Liu. 2022. "A Transferable Thruster Fault Diagnosis Approach for Autonomous Underwater Vehicle under Different Working Conditions with Insufficient Labeled Training Data" Machines 10, no. 12: 1236. https://doi.org/10.3390/machines10121236
APA StyleYin, B., Wang, Z., Zhang, M., Jin, Z., & Liu, X. (2022). A Transferable Thruster Fault Diagnosis Approach for Autonomous Underwater Vehicle under Different Working Conditions with Insufficient Labeled Training Data. Machines, 10(12), 1236. https://doi.org/10.3390/machines10121236