Testing of Cutting Tools on a Pneumatic Experimental Device and Evaluation of Cutting Edge Wear Using a Non-Contact 3D Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Delimbing Knife
2.3. Wood Samples Used for Experimental Measurements
2.4. Method for Analysis of Cutting Edge Wear on the Delimbing Knife
2.5. Calculation of Experimental Input Parameters
2.6. Calculation of the Cutting Force of the Pneumatic Cylinder
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hatton, B. Experimental Determination of Delimbing Forces and Deformations in Hardwood Harvesting, Croatian Journal of Forest Engineering. ISSN 1845-5719. 2015. Available online: https://hrcak.srce.hr/index.php?id_clanak_jezik=200723&show=clanak* (accessed on 24 September 2015).
- Kirlek, J.; Ťavodová, M.; Kováč, J.; Tichý, B. Impact of irregular tooth pitch of circular saw blades on power for wood cross-cutting. Drv. Ind. 2020, 71, 3–11. [Google Scholar] [CrossRef]
- Kováč, J.; Krilek, J.; Jobbágy, J.; Dvořák, J. Technique and Mechanization in Forestry; Technical University in Zvolen: Zvolen, Slovakia, 2017; ISBN 978-80-228-3021-8. [Google Scholar]
- Melicherčík, J.; Krilek, J.; Harvánek, P. Simulation of stress and strain analysis on a delimbing knife with replaceable cutting edge. BioResources 2020, 15, 3799–3808. [Google Scholar] [CrossRef]
- Lindroos, O.; La Hera, P. Drivers of Advances in Mechanized Timber Harvesting—A Selective Review of Technological Innovation. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2017, 38, 243–258. [Google Scholar]
- Kalincová, D.; Ťavodová, M.; Ľuptáčiková, V. Application of the weld deposits on function surfaces of the forest machines components. Manuf. Technol. 2018, 18, 400–405. [Google Scholar] [CrossRef]
- Voronicyn, K.I.; Gugelev, S.M. 1989: Mašinnaja Obrezka Sučjev na Lesoseke; Lesnaja Promyšlennosť: Moscow, Russia, 1989; 272p. [Google Scholar]
- Ťavodová, M.; Krilek, J.; Perec, A.; Kalincová, D.; Kováč, J. Analysis of the wear of saw blade teeth and the proposal of methods of increasing their wear resistance. MM Sci. J. 2016, 9, 1287–1291. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Hartsough, B.R.; Magagnotti, N. Productivity Standards for Harvesters and Processors in Italy. For. Prod. J. 2010, 60, 226–235. [Google Scholar] [CrossRef]
- Hiesl, P.l.; Benjamin, J.G. Applicability of International Harvesting Equipment Productivity Studies in Maine, USA: A Literature Review. Forests 2013, 4, 898–921. [Google Scholar] [CrossRef] [Green Version]
- Schmidtova, J.; Vacek, V. Applied Statistics, 1st ed.; Technical University in Zvolen: Zvolen, Slovakia, 2013; 139p. [Google Scholar]
- Glöde, D.; Sikström, U. Two felling methods in final cutting of shelterwood, single-grip harvester productivity and damage to the regeneration. Silva Fenn. 2001, 35, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Melicherčík, J.; Krilek, J. Design of methodology for measurement of chiplles of cutting wood. Acta Fac. Tech. Zvolen: Sci. J. Fac. Technol. 2021, 2, 39–45. [Google Scholar]
- Mikleš, M.; Holík, J.; Mikleš, J. Forestry Machinery. Technical University in Zvolen: Zvolen, Slovakia, 2014. [Google Scholar]
- Gellerstedt, S. Operation of the Single-Grip Harvester: Motor-Sensory and Cognitive Work. Int. J. For. Eng. 2013, 13, 35–47. [Google Scholar] [CrossRef]
- Watson, W.F.; Twaddle, A.A.; Hudscon, J.B. Review of Chain Flail Delimbing-Debarking, Forest Research Institute Rotorua, New Zealand, J. B. Hudson University of Aberdeen Aberdeen, Scotland. J. For. Eng. 2013, 4, 37–52. [Google Scholar] [CrossRef]
- Kalincová, D.; Ťavodová, M.; Hnilicová, M.; Veverková, D. Machinery for forest cultivation - increase of resistance to abrasive wear of the tool. MM Sci. J. 2016, 5, 1269–1272. [Google Scholar] [CrossRef]
- Kováč, J. The ergonomics of forest machines in the forest harvesting—VEGA 1/0403/11. In Kolokvium ku Grantovej úlohe č. 1/0403/11; Technická Univerzita vo Zvolene: Zvolen, Slovakia, 2013; Volume 1, pp. 39–43. ISBN 978-80-228-2594-8. [Google Scholar]
- Krilek, J.; Kováč., J.; Dvořák, J.; Mikleš, J. Výskum Rezných Mechanizmov v Lesníctve; Vedecká Monografia; Technická Univerzita vo Zvolene: Zvolen, Slovakia, 2015; ISBN 978-80-228-3056-0. [Google Scholar]
- Gerasimov, Y.; Seliverstov, A.; Syunev, V. Industrial Round-Wood Damage and Operational Efficiency Losses Associated with the Maintenance of a Single-Grip Harvester Head Model: A Case Study in Russia. Forests 2012, 3, 864–880. [Google Scholar] [CrossRef]
- Nuutinen, Y.; Väätäinen, K.; Asikainen, A.; Prinz, R.; Heinonen, J. Operational efficiency and damage to sawlogs by feed rollers of the harvester head. Silva Fenn. 2010, 44, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Ťavodová, M.; Kalincová, D.; Hnilicová, M. The influence of heat treatment on tool properties mulcher. Manuf. Technol. J. Sci. Res. Prod. 2016, 16, 1169–1173. [Google Scholar] [CrossRef]
- Adebayo, A.B.; Han, H.S.; Johnson, L. Productivity and cost of cut-to-length and whole-tree harvesting in a mixed-conifer stand. For. Prod. J. 2007, 57, 59–69. [Google Scholar]
- Holzleitner, F.; Stampfer, K.; Visser, R. Utilization rates and cost factors in timber harvesting based on long-term machine data. Croat. J. For. Eng. 2011, 32, 501–508. [Google Scholar]
Knife No. | δ (°) | α (°) | s (mm) | ρ—Radius of the Cutting Edge (mm) |
---|---|---|---|---|
Knife 1. | 20 | 7 | 15 | 0.012–0.025 |
Knife 2. | 15 | 4 | 15 | 0.012–0.025 |
Knife 3. | 20 | 4 | 15 | 0.012–0.025 |
Objective Magnification | 2.5× | 5× | 10 × HX | 10× | 20 × HX | 20× | 50× | 100× |
---|---|---|---|---|---|---|---|---|
Working distance | 8.8 mm | 23.5 mm | 37 mm | 17.5 mm | 30 mm | 19 mm | 11 mm | 4.5 mm |
Lateral measurement range (X,Y) | 5.63 mm | 2.82 mm | 1.62 mm | 1.62 mm | 0.7 mm | 0.81 mm | 0.32 mm | 0.16 mm |
Vertical resolution | 2300 nm | 410 nm | 250 nm | 100 nm | 80 nm | 50 nm | 20 nm | 10 nm |
Accuracy of height steps (1 mm) | 0.05% | 0.05% | 0.05% | 0.05% | 0.05% | 0.05% | 0.05% | 0.05% |
Min. measurable roughness (Ra) | 7 µm | 1.2 µm | 0.75 µm | 0.3 µm | 0.24 µm | 0.15 µm | 0.06 µm | 0.03 µm |
Min. measurable roughness (Sa) | 3.5 µm | 0.6 µm | 0.375 µm | 0.15 µm | 0.12 µm | 0.075 µm | 0.03 µm | 0.015 µm |
Min. measurable radius | 20 mm | 10 mm | 5 mm | 5 mm | 3 mm | 3 mm | 2 mm | 1 mm |
Knife | Max. Cutting Force Average | Max. Cutting Force N | Max. Cutting Force Standard Deviation |
---|---|---|---|
N1 | 2.0711 | 90 | 0.533 |
N2 | 3.1286 | 90 | 0.554 |
N3 | 3.9106 | 90 | 0.426 |
All groups | 3.0368 | 270 | 0.909 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melicherčík, J.; Krilek, J.; Kováč, J.; Kuvik, T.; Kučera, M. Testing of Cutting Tools on a Pneumatic Experimental Device and Evaluation of Cutting Edge Wear Using a Non-Contact 3D Method. Machines 2022, 10, 1158. https://doi.org/10.3390/machines10121158
Melicherčík J, Krilek J, Kováč J, Kuvik T, Kučera M. Testing of Cutting Tools on a Pneumatic Experimental Device and Evaluation of Cutting Edge Wear Using a Non-Contact 3D Method. Machines. 2022; 10(12):1158. https://doi.org/10.3390/machines10121158
Chicago/Turabian StyleMelicherčík, Ján, Jozef Krilek, Ján Kováč, Tomáš Kuvik, and Marián Kučera. 2022. "Testing of Cutting Tools on a Pneumatic Experimental Device and Evaluation of Cutting Edge Wear Using a Non-Contact 3D Method" Machines 10, no. 12: 1158. https://doi.org/10.3390/machines10121158
APA StyleMelicherčík, J., Krilek, J., Kováč, J., Kuvik, T., & Kučera, M. (2022). Testing of Cutting Tools on a Pneumatic Experimental Device and Evaluation of Cutting Edge Wear Using a Non-Contact 3D Method. Machines, 10(12), 1158. https://doi.org/10.3390/machines10121158