A New Model for Remaining Useful Life Prediction Based on NICE and TCN-BiLSTM under Missing Data
Abstract
:1. Introduction
2. Literature Review
- (1)
- This paper introduces NICE technology, which can fully mine the true distribution laws behind missing data, map training data to a standard normal distribution, generate realistic data through reversible sampling, and then fill in missing values. Thus, multivariate degradation data can be generated in the full-time sense;
- (2)
3. Problem Formulation
- (1)
- How to design a data generation model to achieve optimal filling of missing parts of the data;
- (2)
- How to build the RUL prediction network model to achieve accurate prediction of the RUL of the equipment.
4. Multidimensional Missing Data Generation and Prediction
4.1. Multivariate Degraded Data-Filling Model Based on the NICE Model
4.2. Multivariate Degraded Data Prediction Model Based on the TCN-BiLSTM Model
5. Experimental Research
5.1. Implementation
5.2. Data Set Introduction and Preprocessing
5.3. Multivariate Degraded Data-Filling
5.4. Multivariate Degraded Data RUL Prediction
5.4.1. Multidimensional Sliding Time Window
5.4.2. Predictive Model Configuration and Evaluation Metrics
5.4.3. Experimental Results and Performance Analysis
5.4.4. Comparative Analysis of RUL Prediction Methods
6. Conclusions
- (1)
- A multisource degradation data generation method based on the NICE model is proposed, which can quickly and accurately learn the real distribution behind multisource data;
- (2)
- A method for predicting the RUL of multidimensional degraded equipment based on the fusion of the TCN and BiLSTM models is proposed. First, multidimensional local features are extracted, and then depth information is predicted. Especially in the later stage, when the multi-degraded equipment is close to failure, the error between the predicted RUL value and the actual value is smaller;
- (3)
- Compared with other models, TCN-BiLSTM achieves superior performance. The effects of different receptive field combinations on the prediction performance are studied.
Author Contributions
Funding
Conflicts of Interest
References
- Zio, E. Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice. Reliab. Eng. Syst. Saf. 2022, 218, 108119. [Google Scholar] [CrossRef]
- Chao, M.A.; Kulkarni, C.; Goebel, K.; Fink, O. Fusing physics-based and deep learning models for prognostics. Reliab. Eng. Syst. Saf. 2022, 217, 107961. [Google Scholar] [CrossRef]
- Wen, Y.; Rahman, M.F.; Xu, H.; Tseng, T.L.B. Recent advances and trends of predictive maintenance from data-driven machine prognostics perspective. Measurement 2022, 187, 110276. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Y.; Wu, S.; Li, X.; Luo, H.; Yin, S. Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism. Reliab. Eng. Syst. Saf. 2022, 221, 108297. [Google Scholar] [CrossRef]
- Ren, L.; Liu, Y.; Huang, D.; Huang, K.; Yang, C. Mctan: A novel multichannel temporal attention-based network for industrial health indicator prediction. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Liu, L.; Song, X.; Zhou, Z. Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture. Reliab. Eng. Syst. Saf. 2022, 221, 108330. [Google Scholar] [CrossRef]
- Zheng, J.F.; Si, X.S.; Hu, C.H.; Zhang, Z.X.; Jiang, W. A nonlinear prognostic model for degrading systems with three-source variability. IEEE Trans. Reliab. 2016, 65, 736–750. [Google Scholar] [CrossRef]
- Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A deep learning model for predictive maintenance in cyber-physical production systems using lstm autoencoders. Sensors 2021, 21, 972. [Google Scholar] [CrossRef]
- Dong, Q.; Zheng, J.F.; Hu, C.H.; Li, B.; Mu, H.X. Remaining useful life prognostic method based on two-stage adaptive Wiener process. Acta Autom. Sin. 2022, 48. (In Chinese) [Google Scholar] [CrossRef]
- Dong, Q.; Zheng, J.F.; Hu, C.H.; Yu, T.H.; Mu, H.X. Remaining useful life prediction for adaptive Wiener process method with random shock. Acta Aeronaut. Astronaut. Sin. 2022, 48, 539–553. (In Chinese) [Google Scholar]
- Pei, H.; Hu, C.H.; Si, X.S.; Zhang, J.X.; Pang, Z.N.; Zhang, P. Overview of machine learning-based equipment remaining life prediction methods. J. Mech. Eng. 2019, 55, 1–13. (In Chinese) [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliab. Eng. Syst. Saf. 2019, 182, 208–218. [Google Scholar] [CrossRef]
- Wang, J.; Wen, G.; Yang, S.; Liu, Y. Remaining useful life estimation in prognostics using deep bidirectional LSTM neural network. In Proceedings of the 2018 Prognostics and System Health Management Conference (PHM-Chongqing), Chongqing, China, 26–28 October 2018; pp. 1037–1042. [Google Scholar]
- Zhang, P.; Gao, Z.; Cao, L.; Dong, F.; Zou, Y.; Wang, K.; Zhang, Y.; Sun, P. Marine Systems and Equipment Prognostics and Health Management: A Systematic Review from Health Condition Monitoring to Maintenance Strategy. Machines 2022, 10, 72. [Google Scholar] [CrossRef]
- Bhavsar, K.; Vakharia, V.; Chaudhari, R.; Vora, J.; Pimenov, D.Y.; Giasin, K. A Comparative Study to Predict Bearing Degradation Using Discrete Wavelet Transform (DWT), Tabular Generative Adversarial Networks (TGAN) and Machine Learning Models. Machines 2022, 10, 176. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Liao, Y.; Su, K. A New Method of Bearing Remaining Useful Life Based on Life Evolution and SE-ConvLSTM Neural Network. Machines 2022, 10, 639. [Google Scholar] [CrossRef]
- Xin, H.; Zhang, H.; Yang, Y.; Wang, J. Evaluation of Rolling Bearing Performance Degradation Based on Comprehensive Index Reduction and SVDD. Machines 2022, 10, 677. [Google Scholar] [CrossRef]
- Zhang, Z.; Si, X.; Hu, C.; Lei, Y. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods. Eur. J. Oper. Res. 2018, 271, 775–796. [Google Scholar] [CrossRef]
- Sun, F.; Fu, F.; Liao, H.; Xu, D. Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula. Reliab. Eng. Syst. Saf. 2020, 204, 107168. [Google Scholar] [CrossRef]
- Hu, M.F.; Liu, J.W.; Zuo, X. Survey on deep generate model. Acta Autom. Sin. 2022, 48, 40–74. (In Chinese) [Google Scholar]
- Smolensky, P. Information Processing in Dynamical Systems: Foundations of Harmony Theory; Boulder Department of Computer Science, Colorado University: Boulder, CO, USA, 1986. [Google Scholar]
- Burda, Y.; Grosse, R.; Salakhutdinov, R. Importance weighted autoencoders. arXiv 2015, arXiv:1509.00519. [Google Scholar]
- Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- Walker, J.; Doersch, C.; Gupta, A.; Hebert, M. An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 835–851. [Google Scholar]
- Ehsan Abbasnejad, M.; Dick, A.; van den Hengel, A. Infinite variational autoencoder for semi-supervised learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5888–5897. [Google Scholar]
- Xu, W.; Tan, Y. Semisupervised text classification by variational autoencoder. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, T.D.; Whitney, W.F.; Kohli, P.; Tenenbaum, J. Deep convolutional inverse graphics network. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644. [Google Scholar]
- Sønderby, C.K.; Raiko, T.; Maaløe, L.; Sønderby, S.K.; Winther, O. Ladder variational autoencoders. Adv. Neural Inf. Process. Syst. 2016, 29. [Google Scholar]
- Van Den Oord, A.; Vinyals, O. Neural discrete representation learning. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Razavi, A.; Van den Oord, A.; Vinyals, O. Generating diverse high-fidelity images with vq-vae-2. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar]
- Zhang, S.F.; Li, T.M.; Hu, C.H.; Du, D.B.; Si, X.S. Deep Convolutional Generative Adversarial Network Based Missing Data Generation Method and its application in remaining useful life prediction. Acta Aeronaut. Astronaut. Sin. 2021, 42, 625207. (In Chinese) [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large scale GAN training for high fidelity natural image synthesis. arXiv 2018, arXiv:1809.11096. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Dinh, L.; Krueger, D.; Bengio, Y. Nice: Non-linear independent components estimation. arXiv 2014, arXiv:1410.8516. [Google Scholar]
- Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using real nvp. arXiv 2016, arXiv:1605.08803. [Google Scholar]
- Kingma, D.P.; Dhariwal, P. Glow: Generative flow with invertible 1×1 convolutions. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar]
- Ge, L.; Liao, W.; Wang, S.; Bak-Jensen, B.; Pillai, J.R. Modeling daily load profiles of distribution network for scenario generation using flow-based generative network. IEEE Access 2020, 8, 77587–77597. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Liao, W.; Yang, D. Distributed photovoltaic power stealing data enhancement method based on nonlinear independent component estimation. Autom. Electr. Power Syst. 2022, 46, 171–179. [Google Scholar]
- Gugulothu, N.; Tv, V.; Malhotra, P.; Vig, L.; Agarwal, P.; Shroff, G. Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv 2017, arXiv:1709.01073. [Google Scholar] [CrossRef]
- Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long Short-Term Memory Network for Remaining Useful Life estimation. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 88–95. [Google Scholar] [CrossRef]
- Yu, W.; Kim, I.Y.; Mechefske, C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme. Mech. Syst. Signal Process. 2019, 129, 764–780. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, X.; Li, Y.; Yousaf Iqbal, M. A double-channel hybrid deep neural network based on CNN and BiLSTM for remaining useful life prediction. Sensors 2020, 20, 7109. [Google Scholar] [CrossRef]
- Sateesh Babu, G.; Zhao, P.; Li, X.L. Deep convolutional neural network based regression approach for estimation of remaining useful life. In Proceedings of the International Conference on Database Systems for Advanced Applications, Dallas, TX, USA, 16–19 April 2016; Springer: Cham, Switzerland, 2016; pp. 214–228. [Google Scholar]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Zhang, H.; Ge, B.; Han, B. Real-Time Motor Fault Diagnosis Based on TCN and Attention. Machines 2022, 10, 249. [Google Scholar] [CrossRef]
- Saxena, A.; Goebel, K. Turbofan engine degradation simulation data set. NASA Ames Progn. Data Repos. 2008, 1551–3203. [Google Scholar]
- Li, Y.; Zhang, T. A hybrid Hausdorff distance track correlation algorithm based on time sliding window. MATEC Web of Conferences. EDP Sci. 2021, 336, 07015. [Google Scholar]
- Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Lim, P.; Qin, A.K.; Tan, K.C. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2306–2318. [Google Scholar] [CrossRef]
- Malhotra, P.; Tv, V.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. arXiv 2016, arXiv:1608.06154. [Google Scholar]
No. | Train Engines | Test Engines | Conditions | Fault Modes |
FD001 | 100 | 100 | 1 | 1 |
FD002 | 260 | 260 | 6 | 1 |
FD003 | 100 | 100 | 1 | 2 |
FD004 | 249 | 249 | 6 | 2 |
Mode | Additive Coupling Layers | Coupling Layers | Neurons in Each Layer | Batch Size | Iterations |
NICE | 8 | 5 | 1000 | 64 | 1000 |
FD001 | Training Set | Testing Set |
Number of engine units | 100 | 100 |
Number of data | 26,631 | 13,096 |
Minimum running cycle | 128 | 31 |
Maximum running cycle | 362 | 303 |
Mean running cycle | 206.31 | 130.96 |
Number of time windows | 30 | 30 |
Samples of sliding time windows | 17,731 | 100 |
Mode | TCN (kernel_size-nb_stacks-dilations) | BiLSTM | TCN-BiLSTM | ||
---|---|---|---|---|---|
2-1-16 | 4-1-8 | 8-1-4 | 32-128 | 2-1-16-32-128 | |
RMSE | 11.47 | 12.35 | 13.58 | 11.89 | 4.13 |
Score | 206.26 | 230.30 | 328.42 | 294.29 | 74.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Zhang, B.; Ma, J.; Zhang, Q.; Yang, L. A New Model for Remaining Useful Life Prediction Based on NICE and TCN-BiLSTM under Missing Data. Machines 2022, 10, 974. https://doi.org/10.3390/machines10110974
Zheng J, Zhang B, Ma J, Zhang Q, Yang L. A New Model for Remaining Useful Life Prediction Based on NICE and TCN-BiLSTM under Missing Data. Machines. 2022; 10(11):974. https://doi.org/10.3390/machines10110974
Chicago/Turabian StyleZheng, Jianfei, Bowei Zhang, Jing Ma, Qingchao Zhang, and Lihao Yang. 2022. "A New Model for Remaining Useful Life Prediction Based on NICE and TCN-BiLSTM under Missing Data" Machines 10, no. 11: 974. https://doi.org/10.3390/machines10110974
APA StyleZheng, J., Zhang, B., Ma, J., Zhang, Q., & Yang, L. (2022). A New Model for Remaining Useful Life Prediction Based on NICE and TCN-BiLSTM under Missing Data. Machines, 10(11), 974. https://doi.org/10.3390/machines10110974