Development of a Novel Dynamic Modeling Approach for a Three-Axis Machine Tool in Mechatronic Integration
Abstract
:1. Introduction
2. Proposed Identification of DOF and Joint Position Process
2.1. Modal Information Acquisition
2.2. Component Grouping and Relative Displacement Compensation
2.3. Finding the Position and DOF of Rotational Axis
2.3.1. Calculation of Rotation Axial Vectors
2.3.2. Center of Rotation Position of Object
3. Simulation Analysis and Verification of Experimental Results
3.1. Construction of Vertical Machine Center Model
3.2. IDDP Process
- The base has three DOFs and is set up as a spherical joint at the point :
- (a)
- Base rotation around the X-axis corresponds to the Base Pitch.
- (b)
- Base rotation around the Y-axis corresponds to the Base Roll.
- (c)
- Base rotation around the Z-axis corresponds to the Base Yaw.
- The column has one DOF and is set up as cylindrical joint at the point :
- (a)
- Column rotation around the X-axis corresponds to the Column Pitch.
- The tool magazine has two DOFs and is set up as a universal joint at the point :
- (a)
- Tool magazine rotation around the Y-axis corresponds to the Tool Magazine Roll.
- (b)
- Tool magazine rotation around the Z-axis corresponds to the Tool Magazine Yaw.
3.3. Modal Analysis
4. Case Study of Motion Path Simulation
4.1. Servo Simulation Model of Mechatronics System
4.2. State-Space Model Setup
4.3. Motion Trajectory Result Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altintas, Y.; Brecher, C.; Weck, M.; Witt, S. Virtual machine tool. CIRP Ann. 2005, 54, 115–138. [Google Scholar] [CrossRef]
- Zatarain, M.; Lejardi, E.; Egana, F.; Bueno, R. Modular synthesis of machine tools. CIRP Ann. 1998, 47, 333–336. [Google Scholar] [CrossRef]
- Zhuang, Z.W.; Lu, J.C.; Liu, D.S. A novel identification technique of machine tool support stiffness under the variance of structural weight. Int. J. Adv. Manuf. Technol. 2022, 119, 247–259. [Google Scholar] [CrossRef]
- Ealo, J.A.; Garitaonandia, I.; Fernandes, M.H.; Hernandez-Vazquez, J.M.; Muñoa, J. A practical study of joints in three-dimensional Inverse Receptance Coupling Substructure Analysis method in a horizontal milling machine. Int. J. Mach. Tools Manuf. 2018, 128, 41–51. [Google Scholar] [CrossRef]
- Deng, C.; Yin, G.; Fang, H.; Meng, Z. Dynamic characteristics optimization for a whole vertical machining center based on the configuration of joint stiffness. Int. J. Adv. Manuf. Technol. 2015, 76, 1225–1242. [Google Scholar] [CrossRef]
- Chen, H.; Tan, Z.; Tan, F.; Yin, G. Dynamic performance analysis and optimization method of the horizontal machining center based on contact theory. Int. J. Adv. Manuf. Technol. 2020, 108, 3055–3073. [Google Scholar] [CrossRef]
- Craig, R.R., Jr.; Bampton, M.C. Coupling of substructures for dynamic analyses. AIAA J. 1968, 6, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Bilgili, D.; Budak, E.; Altintas, Y. Multibody dynamic modeling of five-axis machine tools with improved efficiency. Mech. Syst. Sig. Process. 2022, 171, 108945. [Google Scholar] [CrossRef]
- Duan, M.; Lu, H.; Zhang, X.; Li, Z.; Zhang, Y.; Yang, M.; Liu, Q. Dynamic modeling and experimental research on position-dependent behavior of twin ball screw feed system. Int. J. Adv. Manuf. Technol. 2021, 117, 3693–3703. [Google Scholar] [CrossRef]
- Brussel, H.V.; Sas, P.; Nemeth, I. Towards a mechatronic compiler. IEEE/ASME Trans. Mechatron. 2001, 6, 90–105. [Google Scholar] [CrossRef]
- Garitaonandia, I.; Fernandes, M.H.; Albizuri, J. Dynamic model of a centerless grinding machine based on an updated FE model. Int. J. Mach. Tools Manuf. 2008, 48, 832–840. [Google Scholar] [CrossRef]
- Zaeh, M.; Siedl, D. A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools. CIRP Ann. 2007, 56, 383–386. [Google Scholar] [CrossRef]
- Lee, C.H.; Yang, M.Y.; Oh, C.W.; Gim, T.W.; Ha, J.Y. An integrated prediction model including the cutting process for virtual product development of machine tools. Int. J. Mach. Tools Manuf. 2015, 90, 29–43. [Google Scholar] [CrossRef]
- Huang, H.W.; Tsai, M.S.; Huang, Y.C. Modeling and elastic deformation compensation of flexural feed drive system. Int. J. Mach. Tools Manuf. 2018, 132, 96–112. [Google Scholar] [CrossRef]
- Wang, C.P.; Erkorkmaz, K.; McPhee, J.; Engin, S. In-process digital twin estimation for high-performance machine tools with coupled multibody dynamics. CIRP Ann. 2020, 69, 321–324. [Google Scholar] [CrossRef]
- Sato, R.; Tashiro, G.; Shirase, K. Analysis of the coupled vibration between feed drive systems and machine tool structure. Int. J. Autom. Technol. 2015, 9, 689–697. [Google Scholar] [CrossRef]
- Sato, R.; Ito, Y.; Mizuura, S.; Shirase, K. Vibration Mode and Motion Trajectory Simulations of an Articulated Robot by a Dynamic Model Considering Joint Bearing Stiffness. Int. J. Autom. Technol. 2021, 15, 631–640. [Google Scholar] [CrossRef]
- RecurDyn, V9R5; FunctionBay, Inc.: Seongnam-si, Korea. 2022. Available online: http://dev.functionbay.com/RecurDynOnlineHelp/V9R5/index.html# (accessed on 22 October 2022).
- Lyu, D.; Liu, Q.; Liu, H.; Zhao, W. Dynamic error of CNC machine tools: A state-of-the-art review. Int. J. Adv. Manuf. Technol. 2020, 106, 1869–1891. [Google Scholar] [CrossRef]
- Altintas, Y.; Verl, A.; Brecher, C.; Uriarte, L.; Pritschow, G. Machine tool feed drives. CIRP Ann. 2011, 60, 779–796. [Google Scholar] [CrossRef]
- Frey, S.; Dadalau, A.; Verl, A. Expedient modeling of ball screw feed drives. Prod. Eng. 2012, 6, 205–211. [Google Scholar] [CrossRef]
- Vicente, D.A.; Hecker, R.L.; Villegas, F.J.; Flores, G.M. Modeling and vibration mode analysis of a ball screw drive. Int. J. Adv. Manuf. Technol. 2012, 58, 257–265. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, X.; Li, P.; Li, Y.; Su, Z.; Liu, H.; Lu, Z.; Yao, M. Modeling, Identification, and Compensation Control of Friction for a Novel Dual-Drive Hydrostatic Lead Screw Micro-Feed System. Machines 2022, 10, 914. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. Sensor fusion IV: Control paradigms and data structures. Int. Soc. Opt. Photonics 1992, 1611, 586–606. [Google Scholar] [CrossRef]
- Johanastrom, K.; Canudas-De-Wit, C. Revisiting the LuGre friction model. IEEE Control Syst. Mag. 2008, 28, 101–114. [Google Scholar] [CrossRef]
Name | Type | Sensitivity | Unit |
---|---|---|---|
Impact Hammer | PCB 086D20 | 0.2237 | mV/N |
Accelerometers (X) | ICP 356A02 | 9.76 | mV/g |
Accelerometers (Y) | 9.86 | mV/g | |
Accelerometers (Z) | 9.68 | mV/g |
Part | Translation | Rotation | |
---|---|---|---|
Casting | Base | 0 | 3 |
Column | 0 | 1 | |
Tool magazine | 0 | 2 | |
Feed drive system | X-axis | 1 | 3 |
Y-axis | 1 | 3 | |
Z-axis | 1 | 3 | |
Subtotal | 3 | 15 | |
Total | 18 |
Part | X (mm) | Y (mm) | Z (mm) |
---|---|---|---|
Base | 0 | 1063 | −1500 |
Column | 0 | 1300 | 100 |
Tool magazine | −280 | 1500 | 1350 |
Joint | Stiffness (GN-mm/rad) |
---|---|
Base Roll | 653.58 |
Base Yaw | 147.12 |
Base Pitch | 902.78 |
Column Pitch | 184.64 |
Tool magazine Roll | 2.68 |
Tool magazine Yaw | 5.56 |
Mode | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
EMA (Hz) | 21 | 26.5 | 31.5 | 38 | 44 | 58 |
Simplified model (Hz) | 21.5 | 26.4 | 32.8 | 39.8 | 44.4 | 58 |
Error (%) | 2.4 | 0.2 | 4.1 | 4.8 | 1 | 0 |
Symbol | Value | Symbol | Value |
---|---|---|---|
60 (1/s) | 0.1 (N·m/(rad·s−1)) | ||
0.0766 (A·s/m) | 0.5 (rad/s) | ||
3.8282 (A/m) | 0.0069 (N·m) | ||
0.001591 (m/rad) | 1.3374 (N·m) | ||
15.1 (N/m) | 0.16 (N∙m/(rad·s−1)) | ||
0.0115 (N·m) | 0.5 (rad/s) | ||
4.7318 (N·m) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.-S.; Lu, J.-C.; Tsai, M.-S.; Wu, C.-T.; Zhuang, Z.-W. Development of a Novel Dynamic Modeling Approach for a Three-Axis Machine Tool in Mechatronic Integration. Machines 2022, 10, 1102. https://doi.org/10.3390/machines10111102
Liu D-S, Lu J-C, Tsai M-S, Wu C-T, Zhuang Z-W. Development of a Novel Dynamic Modeling Approach for a Three-Axis Machine Tool in Mechatronic Integration. Machines. 2022; 10(11):1102. https://doi.org/10.3390/machines10111102
Chicago/Turabian StyleLiu, De-Shin, Jen-Chang Lu, Meng-Shiun Tsai, Chih-Ta Wu, and Zhen-Wei Zhuang. 2022. "Development of a Novel Dynamic Modeling Approach for a Three-Axis Machine Tool in Mechatronic Integration" Machines 10, no. 11: 1102. https://doi.org/10.3390/machines10111102
APA StyleLiu, D. -S., Lu, J. -C., Tsai, M. -S., Wu, C. -T., & Zhuang, Z. -W. (2022). Development of a Novel Dynamic Modeling Approach for a Three-Axis Machine Tool in Mechatronic Integration. Machines, 10(11), 1102. https://doi.org/10.3390/machines10111102