Discrete-Time Adaptive Decentralized Control for Interconnected Multi-Machine Power Systems with Input Quantization
Abstract
:1. Introduction
2. System Description and Preliminaries
2.1. Multi-Machine Power System Model
2.2. Hysteresis Quantizer Description
2.3. RBF Neural Networks (RBFNNs)
3. Discrete-Time Decentralized Controller Scheme
4. Stability Analysis
5. Experimental Verification
6. Results and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Problem Statement
Appendix A.2. Proof of Theorem 1
References
- Zhang, X.; Wang, S.; Zhu, G.; Ma, J.; Li, X.; Chen, X. Decentralized robust adaptive neural dynamic surface control for multi-machine excitation systems with static var compensator. Int. J. Adapt. Control Signal Process. 2019, 33, 92–113. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, Z.; Wang, S.; Huang, R.; Bi, T.; Mili, L.; Huang, Z. Correlation-aided robust decentralized dynamic state estimation of power systems with unknown control inputs. IEEE Trans. Power Syst. 2019, 35, 2443–2451. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, G.; Cheng, D.; Liu, Y. Adaptive L2 disturbance attenuation control of multi-machine power systems with SMES units. Automatica 2006, 42, 1121–1132. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, G.; Hill, D.J. Robust decentralized nonlinear controller design for multimachine power systems. Automatica 1997, 33, 1725–1733. [Google Scholar] [CrossRef]
- Cho, C.S.; Chung, W.H.; Kuo, S.Y. Cyberphysical security and dependability analysis of digital control systems in nuclear power plants. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 356–369. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; La Scala, M. A Novel Distributed-Decentralized Fixed-Time Optimal Frequency and Excitation Control Framework in a Nonlinear Network-Preserving Power System. IEEE Trans. Power Syst. 2020, 36, 1285–1297. [Google Scholar] [CrossRef]
- Hu, J.X.; Jia, Y.; Yin, Q.H. Implementation of DSP Based on Vector Control Model of AC Excitation Control System for a New Hybrid Excitation Synchronous Generator. Appl. Mech. Mater. 2015, 740, 331–334. [Google Scholar] [CrossRef]
- Wright, A.D.; Balas, M.J. Design of State-Space-Based Control Algorithms for Wind Turbine Speed Regulation. J. Sol. Energy-Eng.-Trans. ASME 2002, 125, 386–395. [Google Scholar] [CrossRef]
- Su, Q.; Quan, W.; Cai, G.; Li, J. An improved adaptive backstepping approach on static var compensator controller of nonlinear power systems. Int. J. Adapt. Control Signal Process. 2018, 32, 700–712. [Google Scholar] [CrossRef]
- Guo, Y.; Hill, D.J.; Wang, Y. Nonlinear decentralized control of large-scale power systems. Automatica 2000, 36, 1275–1289. [Google Scholar] [CrossRef]
- Zhu, G.; Nie, L.; Lv, Z.; Sun, L.; Zhang, X.; Wang, C. Adaptive fuzzy dynamic surface sliding mode control of large-scale power systems with prescribe output tracking performance. ISA Trans. 2020, 99, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Mei, S.; Hu, H.; Wu, F.F.; Ni, Y.; Shen, T. Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multi-machine power systems. IEEE Trans. Power Syst. 2001, 21, 729–736. [Google Scholar]
- Mehraeen, S.; Jagannathan, S.; Crow, M.L. Power system stabilization using adaptive neural network-based dynamic surface control. IEEE Trans. Power Syst. 2010, 26, 669–680. [Google Scholar] [CrossRef]
- Jing, Z.; Wen, C.; Yang, G.H. Adaptive Backstepping Stabilization of Nonlinear Uncertain Systems with Quantized Input Signal. IEEE Trans. Autom. Control 2014, 59, 460–464. [Google Scholar]
- Ioannou, P.A. Decentralized adaptive control of interconnected systems. IEEE Trans. Autom. Control 1986, 31, 291–298. [Google Scholar] [CrossRef]
- Liu, H.; Hu, Z.; Song, Y. Lyapunov-based decentralized excitation control for global asymptotic stability and voltage regulation of multi-machine power systems. IEEE Trans. Power Syst. 2012, 27, 2262–2270. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Chen, X.; Su, C.Y.; Li, Z.; Wang, C.; Peng, Y. Decentralized Adaptive Neural Approximated Inverse Control for a Class of Large-Scale Nonlinear Hysteretic Systems with Time Delays. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2424–2437. [Google Scholar] [CrossRef]
- Wan, Y.; Milano, F. Nonlinear adaptive excitation control for structure preserving power systems. IEEE Trans. Power Syst. 2017, 33, 3107–3117. [Google Scholar] [CrossRef]
- Jiang, Z. Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback. IEEE Trans. Autom. Control 2000, 45, 2122–2128. [Google Scholar] [CrossRef]
- Zhang, T.; Xia, X. Decentralized adaptive fuzzy output feedback control of stochastic nonlinear large-scale systems with dynamic uncertainties. Inf. Sci. 2015, 315, 17–38. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, Y.; Gao, Z. A robust decentralized load frequency controller for interconnected power systems. ISA Trans. 2012, 51, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, L.; Li, T.; Zhang, H. Minimum-learning-parameters-based adaptive neural fault tolerant control with its application to continuous stirred tank reactor. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1275–1285. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, L.; Feng, G. Fuzzy Decentralized Control for a Class of Networked Systems with Time Delay and Missing Measurements. Asian J. Control 2015, 17, 84–98. [Google Scholar] [CrossRef]
- Yang, C.; Jiang, Y.; He, W.; Na, J.; Li, Z.; Xu, B. Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Ind. Electron. 2018, 65, 8112–8123. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Zhu, G.; Su, C.Y. Output Feedback Adaptive Motion Control and Its Experimental Verification for Time-Delay Nonlinear Systems with Asymmetric Hysteresis. IEEE Trans. Ind. Electron. 2020, 67, 6824–6834. [Google Scholar] [CrossRef]
- Li, Z.; Shan, J.; Gabbert, U. Dynamics Modeling and Inversion-Based Synchronized Model Predictive Control for a Fabry–Perot Spectrometer. IEEE/ASME Trans. Mechatron. 2019, 24, 1818–1828. [Google Scholar] [CrossRef]
- Wang, C.; Wen, C.; Lin, Y.; Wang, W. Decentralized adaptive tracking control for a class of interconnected nonlinear systems with input quantization. Automatica 2017, 81, 359–368. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Yu, R.; Xing, Z. H_∞ Tracking Control of Discrete-Time System with Delays via Data-Based Adaptive Dynamic Programming. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 4078–4085. [Google Scholar] [CrossRef]
- Yeh, P.; Kokotovic, P.V. Adaptive control of a class of nonlinear discrete-time systems. Int. J. Control 1995, 62, 303–324. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Chen, X.; Li, Z.; Peng, Y.; Su, C.Y. Adaptive Implicit Inverse Control for a Class of Discrete-Time Hysteretic Nonlinear Systems and Its Application. IEEE Trans. Mechatron. 2020, 25, 2112–2122. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, S.; Tong, S.; Chen, C.P. Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wen, C.; Soh, Y.C. Brief Robust adaptive control of uncertain discrete-time systems. Automatica 1999, 35, 321–329. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, C.; Soh, Y.C. Discrete-time robust backstepping adaptive control for nonlinear time-varying systems. IEEE Trans. Autom. Control 2000, 45, 1749–1755. [Google Scholar] [CrossRef]
- Ge, S.S.; Li, G.; Lee, T.H. Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica 2003, 39, 807–819. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z.; Su, C.Y.; Li, Z.; Li, X.; Xiong, C.; Lin, Y. Fuzzy approximator based adaptive dynamic surface control for unknown time delay nonlinear systems with input asymmetric hysteresis nonlinearities. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 2218–2232. [Google Scholar] [CrossRef]
- Ge, S.S.; Yang, C.; Dai, S.; Jiao, Z.; Lee, T.H. Robust adaptive control of a class of nonlinear strict-feedback discrete-time systems with exact output tracking. Automatica 2009, 45, 2537–2545. [Google Scholar] [CrossRef]
- Alanis, A.Y.; Sanchez, E.N.; Loukianov, A.G. Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Trans. Neural Netw. 2007, 18, 1185–1195. [Google Scholar] [CrossRef]
- Liu, Y.J.; Tang, L.; Tong, S.; Chen, C.L. Adaptive NN Controller Design for a Class of Nonlinear MIMO Discrete-Time Systems. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1007–1018. [Google Scholar] [CrossRef]
- Yu, J.; Shi, P.; Yu, H.; Chen, B.; Lin, C. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors. IEEE Trans. Cybern. 2015, 45, 1363–1371. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Zhang, Y.; Chen, C.L.P. Adaptive Fuzzy Quantized Control for Nonlinear Systems with Hysteretic Actuator Using a New Filter-Connected Quantizer. IEEE Trans. Cybern. 2020, 50, 876–889. [Google Scholar] [CrossRef]
- Xie, K.; Lyu, Z.; Liu, Z.; Zhang, Y.; Chen, C.P. Adaptive Neural Quantized Control for a Class of MIMO Switched Nonlinear Systems with Asymmetric Actuator Dead-Zone. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1927–1941. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Xiong, J.; Li, Z.; Park, J.H. Quantized Static Output Feedback Control For Discrete-Time Systems. IEEE Trans. Ind. Inform. 2017, 14, 3426–3435. [Google Scholar] [CrossRef]
- Wang, C.; Wen, C.; Hu, Q.; Wang, W.; Zhang, X. Distributed Adaptive Containment Control for a Class of Nonlinear Multiagent Systems with Input Quantization. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2419–2428. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Wen, C.; Yang, Z.; Su, H.; Liu, Z. Output feedback control for uncertain nonlinear systems with input quantization. Automatica 2016, 65, 191–202. [Google Scholar] [CrossRef]
- Hayakawa, T.; Ishii, H.; Tsumura, K. Adaptive quantized control for linear uncertain discrete-time systems. Automatica 2009, 45, 692–700. [Google Scholar] [CrossRef]
- Li, Y.; Tong, S. Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays. Inf. Sci. 2015, 292, 125–142. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, Z.; Chen, X.; Su, C.Y. Adaptive Implicit Inverse Control for a Class of Butterfly-Like Hysteretic Nonlinear Systems and Its Application to Dielectric Elastomer Actuators. IEEE Trans. Ind. Electron. 2022, 70, 731–740. [Google Scholar] [CrossRef]
- Sun, L.Y.; Tong, S.; Liu, Y. Adaptive Backstepping Sliding Mode H_∞ Control of Static Var Compensator. IEEE Trans. Control Syst. Technol. 2010, 19, 1178–1185. [Google Scholar] [CrossRef]
- Xu, W.; Li, Z.; Cui, G.; Wang, C.; Hu, F. Fuzzy adaptive finite time command filter backstepping control of power system. Int. J. Control Autom. Syst. 2021, 19, 3812–3822. [Google Scholar] [CrossRef]
- Wang, S.; Ou, X.; Li, D.; Wang, H.; Zhu, G. K-Filter Observer Based Adaptive Quantized Decentralized Excitation Control for Multi-Machine Power Systems with the Line Transmission Delays. IEEE Access 2021, 9, 51355–51367. [Google Scholar] [CrossRef]
Symbol | Nomenclature | Symbol | Nomenclature |
---|---|---|---|
Power angle of the ith generator, in rad | Relative speed of the ith generator, in rad/s | ||
Rated frequency, in Hz | Synchronous machine speed, in rad/s | ||
Per-unit damping constant | Mechanical input power, in p.u. | ||
Inertia constant, in seconds | Electrical power, in p.u. | ||
Q-axis internal transient electric potential, in p.u. | EMF in the quadrature axis, in p.u. | ||
Equivalent EMF in the excitation coil, in p.u. | Gain of the excitation amplifier, in p.u. | ||
Input of the SCR amplifier, in p.u. | Mutual reactance between the excitation coil and the stator coil, in p.u. | ||
Direct axis transient short-circuit time constant, in seconds | Reactive power, in p.u. | ||
Quadrature axis current, in p.u. | Direct axis current, in p.u. | ||
The row and column element of nodal susceptance matrix at the internal nodes after eliminating all physical buses, in p.u. | Direct axis reactance, in p.u. | ||
Direct axis transient reactance, in p.u. | Time constant of adjusting system and SVC, in p.u. | ||
Input of SVC, in p.u. | Adjustable equivalent susceptance in SVC, in p.u. | ||
Initial value of adjustable susceptance, in p.u. | Access point voltage of SVC, in p.u. | ||
Reference of accessing point voltage of SVC, in p.u. |
Head | G#1 | Transmission Line | G#2 |
---|---|---|---|
1.863 | 2.36 | ||
0.257 | 0.319 | ||
0.129 | 0.11 | ||
1.712 | 1.712 | ||
6.9 | 7.96 | ||
4 | 5.1 | ||
5 | 3 | ||
314.15 | 314.12 | ||
0.55 | |||
0.53 | |||
0.6 |
Type of Error (Degree) | MVTE | RMSVTE | |
---|---|---|---|
Backstepping | 0.0277 | 0.0164 | |
Scheme | 0.0501 | 0.0157 | |
Proposed | 0.0150 | 0.0066 | |
Scheme | 0.0118 | 0.0036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Wang, M.; Hong, H.; Zhao, J.; Cai, G.; Zhang, X.; Lu, P. Discrete-Time Adaptive Decentralized Control for Interconnected Multi-Machine Power Systems with Input Quantization. Machines 2022, 10, 878. https://doi.org/10.3390/machines10100878
Ge J, Wang M, Hong H, Zhao J, Cai G, Zhang X, Lu P. Discrete-Time Adaptive Decentralized Control for Interconnected Multi-Machine Power Systems with Input Quantization. Machines. 2022; 10(10):878. https://doi.org/10.3390/machines10100878
Chicago/Turabian StyleGe, Junxiong, Mengyun Wang, Haimin Hong, Jinyu Zhao, Guowei Cai, Xiuyu Zhang, and Pukun Lu. 2022. "Discrete-Time Adaptive Decentralized Control for Interconnected Multi-Machine Power Systems with Input Quantization" Machines 10, no. 10: 878. https://doi.org/10.3390/machines10100878
APA StyleGe, J., Wang, M., Hong, H., Zhao, J., Cai, G., Zhang, X., & Lu, P. (2022). Discrete-Time Adaptive Decentralized Control for Interconnected Multi-Machine Power Systems with Input Quantization. Machines, 10(10), 878. https://doi.org/10.3390/machines10100878