Measure of Noncompactness for Hybrid Langevin Fractional Differential Equations
Abstract
:1. Introduction
2. Basic Concepts and Relevant Lemmas
- , ,
- , then ,
- ,
- If is a sequence of closed subsets of with and , then .
3. Main Results
- (i)
- Both functions are continuous;
- (ii)
- The function , and the function ;
- (iii)
- There exists a real number such that
- (iv)
- There exist a continuous function , and a continuous nondecreasing function
- (v)
- There is a positive real number conditionally:
- Case
- If . Then,
- and
- .
- Case
- If . Then,
- and
- .
- Case
- If . Then,
- and.
4. Example
- , and
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haddad, W.M.; Chellaboina, V.S.; Nersesov, S.G. Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity and Control; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Keten, A.; Yavuz, M.; Baleanu, D. Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces. Fractal Fract. 2019, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, B.; Aydi, H.; Karapınar, E.; Rakocevi, V. A Solution for Volterra Fractional Integral Equations by Hybrid Contractions. Mathematics 2019, 7, 694. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Agarwal, R.P.; Karapınar, E.; Kumari, P.S. Solutions of the Nonlinear Integral Equation and Fractional Differential Equation Using the Technique of a Fixed Point with a Numerical Experiment in Extended b-Metric Space. Symmetry 2019, 11, 686. [Google Scholar] [CrossRef] [Green Version]
- Karapınar, E.; Fulga, A.; Rashid, M.; Shahid, L.; Aydi, H. Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional. Mathematics 2019, 7, 444. [Google Scholar] [CrossRef] [Green Version]
- Karapınar, E.; Abdeljawad, T.; Jarad, F. Applying new fixed point theorems on fractional and ordinary differential equations. Adv. Differ. Equ. 2019, 2019, 421. [Google Scholar] [CrossRef] [Green Version]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplanktonzooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application; Elsevier Academic Press: London, UK, 2017. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Sabatier, J.; Agrawal, R.P.; Machado, J.T. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics And Engineering; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Academic Publichers: Cambridge, MA, USA, 2009. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Zhao, Y.; Sun, S.; Han, Z.; Li, Q. The existence of multiple positive solutions for boundary value problems of nonlinear fractional differential equations. Commun. Nonlinear Scri Numer. Simul. 2011, 16, 2086–2097. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, Y. Solvability of boundary value problems of nonlinear fractional differential equations. Adv. Differ Equ. 2015, 2015, 36. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Fractional integral problems for fractional differential equations via caputo derivative. Adv. Differ. Equ. 2014, 2014, 181. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.; Alnegga, M. Fractional Langevin equations with multi-point and non-local integral boundary conditions. Cogent Math. Stat. 2020, 7, 1758361. [Google Scholar] [CrossRef]
- Salem, A.; Aghamdi, B. Multi-Strip and Multi-Point Boundary Conditions for Fractional Langevin Equation. Fractal Fract. 2020, 4, 18. [Google Scholar] [CrossRef]
- Salem, A.; Alzahrani, F.; Alnegga, M. Coupled System of Non-linear Fractional Langevin Equations with Multi-point and Nonlocal Integral Boundary Conditions. Math. Problem Eng. 2020, 2020, 7345658. [Google Scholar]
- Salem, A.; Alzahrani, F.; Alghamdi, B. Langevin equation involving two fractional orders with three-point boundary conditions. Differ. Integral Equ. 2020, 33, 163–180. [Google Scholar]
- Salem, A.; Alzahrani, F.; Almaghamsi, L. Fractional Langevin equation with nonlocal integral boundary condition. Mathematics 2019, 7, 402. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.; Aghamdi, B. Multi-Point and Anti-Periodic Conditions for Generalized Langevin Equation with Two Fractional Orders. Fractal Fract. 2019, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Fazli, H.; Nieto, J.J. Fractional Langevin equation with anti-periodic boundary conditions. Chaos Solitons Fractals 2018, 114, 332–337. [Google Scholar] [CrossRef]
- Yukunthorn, W.; Ntouyas, S.K.; Tariboon, J. Nonlinear fractional Caputo Langevin equation with nonlocal Riemann Liouville fractional integral conditions. Adv. Differ. Equ. 2014, 2014, 315. [Google Scholar] [CrossRef] [Green Version]
- West, B.J.; Picozzi, S. Fractional Langevin model of memory in financial time series. Phys. Rev. E 2002, 65, 037106. [Google Scholar] [CrossRef]
- Hohenberg, P.C.; Halperin, B.I. Theory of dynamic critical phenomena. Rev. Mod. Phys. 1977, 49, 435–479. [Google Scholar] [CrossRef]
- Wang, G.; Tokuyama, M. Nonequilibrium statistical description of anomalous diffusion. Phys. A 1999, 265, 341–351. [Google Scholar] [CrossRef]
- Lutz, E. Fractional Langevin equation. Phys. Rev. E 2001, 64, 051106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainardi, F.; Pironi, P. The fractional Langevin equation: Brownian motion revisited. Extr. Math. 1996, 11, 140–154. [Google Scholar]
- Hilal, K.; Kajouni, A. Boundary value problem for hybrid differential equations with fractional order. Adv. Differ. Equ. 2015, 2015, 183. [Google Scholar] [CrossRef] [Green Version]
- Herzallah, M.A.E.; Baleanu, D. On fractional order hybrid differential equations. Abstr. Appl. Anal. 2014, 2014, 389386. [Google Scholar] [CrossRef]
- Lu, H.; Sun, S.; Yang, D.; Teng, H. Theory of fractional hybrid differential equations with linear perturbations of second type, Bound. Value Probl. 2013, 2013, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Sun, S.; Han, Z.; Li, Q. Theory of fractional hybrid differential equations. Comput. Math. Appl. 2011, 62, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equations. Nonlinear Anal. 2010, 4, 414–424. [Google Scholar] [CrossRef]
- Sitho, S.; Ntoyus, S.K.; Tariboon, J. Existence results for hybrid fractional integro-differential equations. Bound Value Probl. 2015, 2015, 113. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.; Khan, R.A.; Shan, K. Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations. Bound Value Probl. 2019, 2019, 77. [Google Scholar] [CrossRef] [Green Version]
- Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Banas, J.; Goebel, K. On a class of measures of noncompactness in babach algebras and their application to nonlinear integral equations. J. Anal. Appl. 2009, 28, 475–498. [Google Scholar]
- Zidane, B.; Kaddour, G.; Mouffak, B.; Yong, Z. Boundary value problems for hybrid caputo fractional differential equations. Mathematics 2019, 7, 282. [Google Scholar]
- Jleli, M.; Karapınar, E.; O’Regan, D.; Samet, B. Some generalizations of Darbo’s theorem and applications to fractional integral equations. Fixed Point Theory Appl. 2016, 2016, 11. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, A.; Alnegga, M. Measure of Noncompactness for Hybrid Langevin Fractional Differential Equations. Axioms 2020, 9, 59. https://doi.org/10.3390/axioms9020059
Salem A, Alnegga M. Measure of Noncompactness for Hybrid Langevin Fractional Differential Equations. Axioms. 2020; 9(2):59. https://doi.org/10.3390/axioms9020059
Chicago/Turabian StyleSalem, Ahmed, and Mohammad Alnegga. 2020. "Measure of Noncompactness for Hybrid Langevin Fractional Differential Equations" Axioms 9, no. 2: 59. https://doi.org/10.3390/axioms9020059
APA StyleSalem, A., & Alnegga, M. (2020). Measure of Noncompactness for Hybrid Langevin Fractional Differential Equations. Axioms, 9(2), 59. https://doi.org/10.3390/axioms9020059