Lyapunov Type Theorems for Exponential Stability of Linear Skew-Product Three-Parameter Semiflows with Discrete Time
Abstract
:1. Introduction
2. Preliminaries
- 1.
- for each and ;
- 2.
- for every and ;
- 3.
- is a continuous map for each .
- 1.
- for and ;
- 2.
- for and , ;
- 3.
- is continuous for each and .
- for ;
- for and ;
- is continuous for each .
Some Auxiliary Results
3. Main Results
- 1.
- ;
- 2.
- 3.
- 4.
4. Applications
- 1.
- Φ is exponentially stable;
- 2.
- there exists such that
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lyapunov, A. The General Problem of the Stability of Motion; Taylor & Francis: London, UK; Washington, DC, USA, 1992. [Google Scholar]
- LaSalle, J.; Lefschetz, S. Stability by Liapunov’s Direct Method, with Applications. In Mathematics in Science and Engineering; Academic Press: New York, NY, USA; London, UK, 1961; Volume 4. [Google Scholar]
- Hahn, W. Stability of Motion. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1967; Volume 138. [Google Scholar]
- Bhatia, N.; Szegö, G. Stability Theory of Dynamical Systems. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1970; Volume 161. [Google Scholar]
- Daleckij, J.; Krein, M. Stability of Differential Equations in Banach Spaces. Amer. Math. Soc. 1974. [Google Scholar] [CrossRef]
- Maizel, A.D. On stability of solutions of systems of differential equations. TRudi Uralskogo Politekh. Inst. Math. 1954, 51, 20–50. [Google Scholar]
- Coppel, W. Dichotomies in Stability Theory. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 629. [Google Scholar]
- Coppel, W. Dichotomies and Lyapunov functions. J. Differ. Equ. 1984, 52, 58–65. [Google Scholar] [CrossRef]
- Muldowney, J.S. Dichotomies and asymptotic behaviour for linear differential systems. Trans. Amer. Math. Soc. 1984, 283, 465–484. [Google Scholar] [CrossRef]
- Papaschinopoulos, G. Dichotomies in terms of Lyapunov functions for linear difference equations. J. Math. Anal. Appl. 1990, 152, 524–535. [Google Scholar] [CrossRef] [Green Version]
- Barreira, L.; Dragičević, D.; Valls, C. Lyapunov functions for strong exponential dichotomies. J. Math. Anal. Appl. 2013, 399, 116–132. [Google Scholar] [CrossRef]
- Barreira, L.; Dragičević, D.; Valls, C. Lyapunov functions for strong exponential contractions. J. Differ. Equ. 2013, 255, 449–468. [Google Scholar] [CrossRef]
- Barreira, L.; Valls, C. Lyapunov sequences for exponential dichotomies. J. Differ. Equ. 2009, 246, 183–215. [Google Scholar] [CrossRef] [Green Version]
- Dragičević, D.; Preda, C. Lyapunov theorems for exponential dichotomies in Hilbert spaces. Intern. J. Math. 2016, 27, 1650033. [Google Scholar] [CrossRef]
- Barreira, L.; Dragičević, D.; Valls, C. Admissibility and hyperbolicity. In Springer Briefs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Barreira, L.; Dragičević, D.; Valls, C. Lyapunov type characterization of hyperbolic behavior. J. Differ. Equ. 2017, 263, 3147–3173. [Google Scholar] [CrossRef]
- Barreira, L.; Dragičević, D.; Valls, C. Nonuniform exponential dichotomies and Lyapunov functions. Regul. Chaotic Dyn. 2017, 22, 197–209. [Google Scholar] [CrossRef]
- Chen, G.; Jendrej, J. Lyapunov-type characterisation of exponential dichotomies with applications to the heat and Klein-Gordon equations. Trans. Amer. Math. Soc. 2019, 372, 7461–7496. [Google Scholar] [CrossRef] [Green Version]
- Barreira, L.; Dragičević, D.; Valls, C. Lyapunov functions and cone families. J. Stat. Phys. 2012, 148, 137–163. [Google Scholar] [CrossRef]
- Megan, M.; Stoica, C. Exponential instability of skew-evolution semiflows in Banach spaces. Stud. Univ. Babes Bolyai Math. 2008, 53, 17–24. [Google Scholar]
- Dragičević, D.; Sasu, A.L.; Sasu, B. On the asymptotic behavior of discrete dynamical systems—An ergodic theory approach. J. Differ. Equ. 2020, 268, 4786–4829. [Google Scholar] [CrossRef]
- Lupa, N.; Popescu, L.H. Admissible Banach function spaces for linear dynamics with nonuniform behavior on the half-line. Semigroup Forum 2019, 98, 184–208. [Google Scholar] [CrossRef] [Green Version]
- Megan, M.; Sasu, A.L.; Sasu, B. On uniform exponential stability of linear skew-product semiflows in Banach spaces. Bull. Belg. Math. Soc. Simon. Stevin. 2002, 9, 143–154. [Google Scholar] [CrossRef]
- Preda, P.; Pogan, A.; Preda, C. Schäffer spaces and uniform exponential stability of linear skew-product semiflows. J. Differ. Equ. 2005, 212, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Sasu, B.; Sasu, A.L. Stability and stabilizability for linear systems of difference equations. J. Differ. Equ. Appl. 2004, 10, 1085–1105. [Google Scholar] [CrossRef]
- Sasu, B. Stability of difference equations and applications to robustness problems. Adv. Differ. Equ. 2010, 2010, 869608. [Google Scholar] [CrossRef]
- Backes, L.; Dragičević, D. A Rolewicz-type characterization of nonuniform behaviour. Appl. Anal. 2019, in press. [Google Scholar] [CrossRef]
- Dragičević, D. Datko-Pazy conditions for nonuniform exponential stability. J. Differ. Equ. Appl. 2018, 24, 344–357. [Google Scholar] [CrossRef]
- Lupa, N.; Popescu, L.H. Admissible Banach function spaces and nonuniform stabilities. arXiv 2016, arXiv:1607.01427. [Google Scholar]
- Preda, C.; Preda, P.; Craciunescu, A. A version of a theorem of R. Datko for nonuniform exponential contractions. J. Math Anal Appl. 2012, 385, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Sasu, A.L.; Megan, M.; Sasu, B. On Rolewicz-Zabczyk techniques in the stability theory of dynamical systems. Fixed Point Theory 2012, 13, 205–236. [Google Scholar]
- Sasu, B. Generalizations of a theorem of Rolewicz. Appl Anal. 2005, 84, 1165–1172. [Google Scholar] [CrossRef]
- Sasu, B. Integral conditions for exponential dichotomy: A nonlinear approach. Bull. Sci. Math. 2010, 134, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Dragičević, D. A note on the nonuniform exponential stability and dichotomy for nonautonomous difference equations. Linear Algebra Appl. 2018, 552, 105–126. [Google Scholar] [CrossRef]
- Dragičević, D. On the exponential stability and hyperbolicity of linear cocycles. Linear Multilinear Algebra 2019, in press. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragičević, D.; Preda, C. Lyapunov Type Theorems for Exponential Stability of Linear Skew-Product Three-Parameter Semiflows with Discrete Time. Axioms 2020, 9, 47. https://doi.org/10.3390/axioms9020047
Dragičević D, Preda C. Lyapunov Type Theorems for Exponential Stability of Linear Skew-Product Three-Parameter Semiflows with Discrete Time. Axioms. 2020; 9(2):47. https://doi.org/10.3390/axioms9020047
Chicago/Turabian StyleDragičević, Davor, and Ciprian Preda. 2020. "Lyapunov Type Theorems for Exponential Stability of Linear Skew-Product Three-Parameter Semiflows with Discrete Time" Axioms 9, no. 2: 47. https://doi.org/10.3390/axioms9020047
APA StyleDragičević, D., & Preda, C. (2020). Lyapunov Type Theorems for Exponential Stability of Linear Skew-Product Three-Parameter Semiflows with Discrete Time. Axioms, 9(2), 47. https://doi.org/10.3390/axioms9020047