On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear Operator
Abstract
:1. Introduction
2. Coefficient Bounds
3. Compactness and Convex
4. Extreme Points
Author Contributions
Funding
Conflicts of Interest
References
- Clunie, J.; Sheil-Small, T. Harmonic Univalent Functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Salagean, G.S. Subclasses of univalent functions. In Complex Analysis - Fifth Roumanian-Finnish Seminar; Cazanu, C.A., Jurchescu, M., Suciu, I., Eds.; Lectures Notes in Mathematics; Springer Nature: Cham, Switzerland, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Jahangiri, J.; Magesh, N.; Murugesan, C. Certain Subclasses of Starlike Harmonic Functions Defined by Subordination. J. Frac. Cal. App. 2017, 8, 88–100. [Google Scholar]
- Yalçın, S.; Altınkaya, Ş. On a Subclass of Harmonic Univalent Functions involving a Linear Operator. AIP Conference Proceedings Vol. 1926, no. 1, p. 020045, Budapest, Hungary, 15–18 August 2017; Tosun, M., Ersoy, S., Ilarslan, K., Eds.; AIP Publishing LLC: New York, NY, USA, 2018. [Google Scholar]
- Bayram, H.; Yalçın, S. A Subclass of Harmonic Univalent Functions Defined by a Linear Operator. Palestine J. Math. 2017, 6, 320–326. [Google Scholar]
- Ramadan, S.F.; Darus, M. On the Fekete-Szegö Inequality for a Class of Analytic Functions Defined by using Generalized Differential Operator. Acta Universitatis Apulensis 2011, 26, 167–178. [Google Scholar]
- Darus, M.; Ibrahim, R.W. On Subclasses for Generalized Operators of Complex Order. Far East J. Math. Sci. 2009, 33, 299–308. [Google Scholar]
- Swamy, S.R. Inclusion Properties of Certain Subclasses of Analytic Functions. Int. Math. Forum 2012, 7, 1751–1760. [Google Scholar]
- Al-Oboudi, F.M. On Univalent Functions Defined by a Generalized Sălăgean Operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Yasar, E.; Yalçin, S. Generalized Salagean-type Harmonic Univalent Functions. Stud. Univ. Babes-Bolyai Math. 2012, 57, 395–403. [Google Scholar]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A Comprehensive Subclass of Bi-univalent Functions Associated with Chebyshev Polynomials of the Second Kind. Bol. Soc. Mat. Mex. 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Al-Hawary, T.; Frasin, B.A.; Yousef, F. Coefficients Estimates for Certain Classes of Analytic Functions of Complex Order. Afr. Mat. 2018, 29, 1265–1271. [Google Scholar] [CrossRef]
- Amourah, A.A.; Yousef, F. Some Properties of a Class of Analytic Functions Involving a New Generalized Differential Operator. Bol. Soc. Paran. Mat. 2020, 38, 33–42. [Google Scholar] [CrossRef]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Necessary and Sufficient Conditions for Hypergeometric Functions to be in a Subclass of Analytic Functions. Afr. Mat. 2019, 30, 223–230. [Google Scholar] [CrossRef]
- Klén, R.; Manojlović, V.; Simić, S.; Vuorinen, M. Bernoulli Inequality and Hypergeometric Functions. Proc. Amer. Math. Soc. 2014, 142, 559–573. [Google Scholar] [CrossRef]
- Malkowsky, E.; Rakočević, V. Advanced Functional Analysis; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Pavlović, M. Function Classes on the Unit Disc: An Introduction, Vol. 52; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2019. [Google Scholar]
- Silverman, H. Univalent Functions with Negative Coefficients. Proc. Amer. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature AG: Cham, Switzerland, 2019. [Google Scholar]
- Dziok, J. On Janowski Harmonic Functions. J. App. Ana. 2015, 21, 99–107. [Google Scholar] [CrossRef]
- Dziok, J.; Jahangiri, J.; Silverman, H. Harmonic Functions with Varying Coefficients. J. Ineq. App. 2016, 2016, 139. [Google Scholar] [CrossRef] [Green Version]
- Jahangiri, J.M. Harmonic Functions Starlike in the Unit Disk. J. Math. Ana. App. 1999, 235, 470–477. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, A.T.; Salleh, Z. On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear Operator. Axioms 2020, 9, 32. https://doi.org/10.3390/axioms9010032
Yousef AT, Salleh Z. On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear Operator. Axioms. 2020; 9(1):32. https://doi.org/10.3390/axioms9010032
Chicago/Turabian StyleYousef, Abdeljabbar Talal, and Zabidin Salleh. 2020. "On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear Operator" Axioms 9, no. 1: 32. https://doi.org/10.3390/axioms9010032
APA StyleYousef, A. T., & Salleh, Z. (2020). On a Harmonic Univalent Subclass of Functions Involving a Generalized Linear Operator. Axioms, 9(1), 32. https://doi.org/10.3390/axioms9010032