Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients
Abstract
1. Introduction
2. The Main Results
3. Illustrative Examples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, M.; Zhao, W. Solving Abel’s type integral equation with Mikusinski’s operator of fractional order. Adv. Math. Phys. 2013, 2013, 806984. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Linear and Nonlinear Integral Equations: Methods and Applications; Higher Education: Beijing, China; Springer: Berlin, Germany, 2011. [Google Scholar]
- Wazwaz, A.M. A First Course in Integral Equations; World Scientific Publishing: Singapore, 1997. [Google Scholar]
- Wazwaz, A.M.; Mehanna, M.S. The combined Laplace-Adomian method for handling singular integral equation of heat transfer. Int. J. Nonlinear Sci. 2010, 10, 248–252. [Google Scholar]
- Mann, W.R.; Wolf, F. Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 1951, 9, 163–184. [Google Scholar] [CrossRef]
- Goncerzewicz, J.; Marcinkowska, H.; Okrasinski, W.; Tabisz, K. On percolation of water from a cylindrical reservoir into the surrounding soil. Appl. Math. 1978, 16, 249–261. [Google Scholar] [CrossRef]
- Keller, J.J. Propagation of simple nonlinear waves in gas filled tubes with friction. Z. Angew. Math. Phys. 1981, 32, 170–181. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997; pp. 223–276. [Google Scholar]
- Avazzadeh, Z.; Shafiee, B.; Loghmani, G.B. Fractional calculus for solving Abel’s integral equations using Chebyshev polynomials. Appl. Math. Sci. 2011, 5, 2207–2216. [Google Scholar]
- Lubich, C. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 1985, 45, 463–469. [Google Scholar] [CrossRef]
- Huang, L.; Huang, Y.; Li, X.F. Approximate solution of Abel integral equation. Comput. Math. Appl. 2008, 56, 1748–1757. [Google Scholar] [CrossRef]
- Brunner, H. Collocation Methods for Volterra Integral and Related Functional Differential Equations; Cambridge Monographs on Applied and Computational Mathematics, 15; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Mandal, N.; Chakrabart, A.; Mandal, B.N. Solution of a system of generalized Abel integral equations using fractional calculus. Appl. Math. Lett. 1996, 9, 1–4. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Srivastava, H.M.; Buschman, R.G. Theory and Applications of Convolution Integral Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1992. [Google Scholar]
- Tamarkin, J.D. On integrable solutions of Abel’s integral equation. Ann. Math. 1930, 31, 219–229. [Google Scholar] [CrossRef]
- Sumner, D.B. Abel’s integral equation as a convolution transform. Proc. Am. Math. Soc. 1956, 7, 82–86. [Google Scholar]
- Minerbo, G.N.; Levy, M.E. Inversion of Abel’s integral equation by means of orthogonal polynomials. SIAM J. Numer. Anal. 1969, 6, 598–616. [Google Scholar] [CrossRef]
- Hatcher, J.R. A nonlinear boundary problem. Proc. Am. Math. Soc. 1985, 95, 441–448. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y. Operational method for solving generalized Abel integral equation of second kind. Integr. Transform. Spec. Funct. 1997, 5, 47–58. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: North-Holland, The Netherlands, 2006. [Google Scholar]
- Brunner, H. A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 1982, 8, 213–219. [Google Scholar] [CrossRef]
- Pskhu, A. On solution representation of generalized Abel integral equation. J. Math. 2013, 2013, 106251. [Google Scholar] [CrossRef][Green Version]
- Li, C.; Li, C.P.; Clarkson, K. Several results of fractional differential and integral equations in distribution. Mathematics 2018, 6, 97. [Google Scholar] [CrossRef]
- Li, C.; Humphries, T.; Plowman, H. Solutions to Abel’s integral equations in distributions. Axioms 2018, 7, 66. [Google Scholar] [CrossRef]
- Li, C.; Clarkson, K. Babenko’s Approach Abel’s Integral Equations. Mathematics 2018, 6, 32. [Google Scholar]
- Babenko, Y.I. Heat and Mass Transfer; Khimiya: Leningrad, Russia, 1986. (In Russian) [Google Scholar]
- Hille, E.; Tamarkin, J.D. On the theory of linear integral equations. Ann. Math. 1930, 31, 479–528. [Google Scholar] [CrossRef]
- Barros-Neto, J. An Introduction to the Theory of Distributions; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions; Academic Press: New York, NY, USA, 1964; Volume I. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Plowman, H. Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients. Axioms 2019, 8, 137. https://doi.org/10.3390/axioms8040137
Li C, Plowman H. Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients. Axioms. 2019; 8(4):137. https://doi.org/10.3390/axioms8040137
Chicago/Turabian StyleLi, Chenkuan, and Hunter Plowman. 2019. "Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients" Axioms 8, no. 4: 137. https://doi.org/10.3390/axioms8040137
APA StyleLi, C., & Plowman, H. (2019). Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients. Axioms, 8(4), 137. https://doi.org/10.3390/axioms8040137