On Fixed Point Results for Modified JS-Contractions with Applications
Abstract
:1. Introduction
- is non-decreasing;
- for each , if and only if ;
- there are and so that
- for all .
- is continuous and strictly increasing;
- for each , if and only if .
2. Main Results
3. Weak-JS Contractive Conditions
- is continuous;
- ;
- or each , iff .
- (i)
- Y is a weakly JS-contraction;
- (ii)
- Y is continuous.
4. Application to Nonlinear Integral Equations
- (i)
- is continuous and there is so that for arbitrary function f with
- (ii)
- there is so that
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur Les Operations Dans Les Ensembles Abstraits et Leur Application Aux Equations Integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 2012, 159, 3234–3242. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Aydi, H.; Karapinar, E.; Samet, B. Fixed point Theorems for various classes of cyclic mappings. J. Appl. Math. 2012, 2012, 867216. [Google Scholar] [CrossRef]
- Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011, 62, 4222–4229. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Ćirić, L.B. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef]
- Ćirić, L.B. Generalized contractions and fixed-point theorems. Publ. Inst. Math. 1971, 12, 19–26. [Google Scholar]
- Ćirić, L.B. Multi-valued nonlinear contraction mappings. Nonlinear Anal. 2009, 71, 2716–2723. [Google Scholar] [CrossRef]
- Ćirić, L.B.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218, 2398–2406. [Google Scholar] [CrossRef]
- Geraghty, M. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [Google Scholar] [CrossRef]
- Hussain, N.; Dorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012, 2012, 126. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef]
- Meir, A.; Keeler, E. A theoremon contraction mapping. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef]
- Mizoguchi, N.; Takahashi, W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 1989, 141, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, Z.; Parvaneh, V.; Jaradat, M.M.M.; Kadelburg, Z. Extended rectangular b-metric spaces and some fixed point theorems for contractive mappings. Symmetry 2019, 11, 594. [Google Scholar] [CrossRef]
- Patle, P.; Patel, D.; Aydi, H.; Radenović, S. On H+-type multivalued contractions and applications in symmetric and probabilistic spaces. Mathematics 2019, 7, 144. [Google Scholar] [CrossRef]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Lohawech, P.; Kaewcharoen, A. Fixed point theorems for generalized JS-quasi-contractions in complete partial b-metric spaces. J. Nonlineart Sci. Appl. 2019, 12, 728–739. [Google Scholar] [CrossRef]
- Mlaiki, N.; Kukić, K.; Gardasević-Filipović, M.; Aydi, H. On almost b-metric spaces and related fixed point results. Axioms 2019, 8, 70. [Google Scholar] [CrossRef]
- Dosenović, T.; Radenović, S. A comment on “Fixed point theorems of JS-quasi-contractions”. Indian J. Math. Dharma Prakash Gupta Meml. 2018, 60, 141–152. [Google Scholar]
- Kadelburg, Z.; Radenović, S.; Shukla, S. Boyd-Wong and Meir-Keeler type theorems in generalized metric spaces. J. Adv. Math. Stud. 2016, 9, 83–93. [Google Scholar]
- Chatterjea, S.K. Fixed Point Theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calc. Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 38. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2015, 2015, 185. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Li, Z.; Damjanović, B. A note on Some fixed point theorems for generalized contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2016, 2016, 62. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvaneh, V.; Hussain, N.; Mukheimer, A.; Aydi, H. On Fixed Point Results for Modified JS-Contractions with Applications. Axioms 2019, 8, 84. https://doi.org/10.3390/axioms8030084
Parvaneh V, Hussain N, Mukheimer A, Aydi H. On Fixed Point Results for Modified JS-Contractions with Applications. Axioms. 2019; 8(3):84. https://doi.org/10.3390/axioms8030084
Chicago/Turabian StyleParvaneh, Vahid, Nawab Hussain, Aiman Mukheimer, and Hassen Aydi. 2019. "On Fixed Point Results for Modified JS-Contractions with Applications" Axioms 8, no. 3: 84. https://doi.org/10.3390/axioms8030084
APA StyleParvaneh, V., Hussain, N., Mukheimer, A., & Aydi, H. (2019). On Fixed Point Results for Modified JS-Contractions with Applications. Axioms, 8(3), 84. https://doi.org/10.3390/axioms8030084