Generalized-Hypergeometric Solutions of the General Fuchsian Linear ODE Having Five Regular Singularities
Abstract
1. Introduction
2. The Approach
3. Explicit Solutions of Lowest Orders
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- The Heun Project: Heun Functions, Their Generalizations and Applications. Available online: https://theheunproject.org/bibliography.html (accessed on 30 August 2019).
- Hortaçsu, M. Heun functions and some of their applications in physics. Adv. High Energy Phys. 2018, 2018, 8621573. [Google Scholar] [CrossRef]
- Fuchs, L. Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coefficienten. J. Reine Angew. Math. 1866, 66, 121–160. [Google Scholar]
- Fuchs, L. Zur Theorie der linearen Differentialgleichungen mit veränderlichen Coefficienten. (Ergänzungen zu der im 66sten Bande dieses Journals enthaltenen Abhandlung). J. Reine Angew. Math. 1868, 68, 354–385. [Google Scholar]
- Heun, K. Zur Theorie der Riemann’schen Functionen Zweiter Ordnung mit Verzweigungspunkten. Math. Ann. 1889, 33, 161–179. [Google Scholar] [CrossRef]
- Ronveaux, A. Heun’s Differential Equations; Oxford University Press: London, UK, 1995. [Google Scholar]
- Slavyanov, S.Y.; Lay, W. Special Functions; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Stechert-Hafner Service Agency: London, UK, 1964. [Google Scholar]
- Ishkhanyan, T.A.; Ishkhanyan, A.M. Generalized confluent hypergeometric solutions of the Heun confluent equation. Appl. Math. Comput. 2018, 338, 624–630. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. Generalized hypergeometric solutions of the Heun equation. arXiv 2018, arXiv:1802.04263. [Google Scholar]
- Frobenius, F.G. Ueber die Integration der linearen Differentialgleichungen durch Reihen. J. Reine Angew. Math. 1873, 76, 214–235. [Google Scholar]
- Letessier, J. Co-recursive associated Jacobi polynomials. J. Comput. Appl. Math. 1995, 57, 203–213. [Google Scholar] [CrossRef]
- Letessier, J.; Valent, G.; Wimp, J. Some differential equations satisfied by hypergeometric functions. Intern. Ser. Numer. Math. 1994, 119, 371–381. [Google Scholar]
- Maier, R.S. P-symbols, Heun Identities, and 3F2 Identities. Contemp. Math. 2008, 471, 139–159. [Google Scholar]
- Ishkhanyan, T.A.; Shahverdyan, T.A.; Ishkhanyan, A.M. Expansions of the solutions of the general Heun equation governed by two-term recurrence relations for coefficients. Adv. High Energy Phys. 2018, 2018, 4263678. [Google Scholar] [CrossRef]
- Takemura, K. Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial. J. Phys. A 2012, 45, 085211. [Google Scholar] [CrossRef]
- Scheffé, H. Linear differential equations with two-term recurrence formulas. J. Math. Phys. 1942, 21, 240–249. [Google Scholar] [CrossRef]
- Crowson, H.L. An analysis of a second order linear ordinary differential equation with five regular singular points. J. Math. Phys. 1964, 43, 38–44. [Google Scholar] [CrossRef]
- Crowson, H.L. Hypergeometric solutions of a second-order linear ordinary differential equation with n-regular singular points. J. Math. Phys. 1965, 44, 384–390. [Google Scholar] [CrossRef]
- Van Hoeij, M.; Kunwar, V.J. Finding 2F1 type solutions of differential equations with 5 singularities. ACM Commun. Comput. Algebra 2012, 46, 96–97. [Google Scholar] [CrossRef]
- Kunwar, V.J. Hypergeometric Solutions of Linear Differential Equations with Rational Function Coefficients. Ph.D. Thesis, Florida State University, Tallahassee, FL, USA, 2014. [Google Scholar]
- Kruglov, V.E. Solution of the linear differential equation of nth-order with four singular points. Ann. Univ. Sci. Bp. Sect. Comp. 2010, 32, 23–35. [Google Scholar]
- Ince, E.L. Ordinary Differential Equations; Dover: New York, NY, USA, 1944. [Google Scholar]
- Redkov, V.M.; Ovsiyuk, E.M. Quantum Mechanics in Spaces of Constant Curvature; Nova Science Publishers: New York, NY, USA, 2011. [Google Scholar]
- Marin, M. Cesaro means in thermoelasticity of dipolar bodies. Acta Mech. 1997, 122, 155–168. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. The third exactly solvable hypergeometric quantum-mechanical potential. EPL 2016, 115, 20002. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. Schrödinger potentials solvable in terms of the general Heun functions. Ann. Phys. 2018, 388, 456–471. [Google Scholar] [CrossRef]
- Exton, H. Multiple Hypergeometric Functions and Applications; Halsted Press: Chichester, UK, 1976. [Google Scholar]
- Dattoli, G.; Cesarano, C. On a new family of Hermite polynomials associated to parabolic cylinder functions. Appl. Math. Comput. 2003, 141, 143–149. [Google Scholar] [CrossRef]
- Cesarano, C. Generalized special functions in the description of fractional diffusive equations. Commun. Appl. Ind. Math. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- Ishkhanyan, A.M. Appell hypergeometric expansions of the solutions of the general Heun equation. Constr. Approx. 2019, 49, 445–459. [Google Scholar] [CrossRef]
- Slavyanov, S.Y. Relations between linear equations and Painlevé’s equations. Constr. Approx. 2014, 39, 75–83. [Google Scholar] [CrossRef]
- Iwasaki, K.; Kimura, H.; Shimomura, S.; Yoshida, M. From Gauss to Painlevé: A Modern Theory of Special Functions, Aspects of Mathematics; Vieweg: Braunschweig, Germany, 1991; Volume 16. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishkhanyan, A.; Cesarano, C. Generalized-Hypergeometric Solutions of the General Fuchsian Linear ODE Having Five Regular Singularities. Axioms 2019, 8, 102. https://doi.org/10.3390/axioms8030102
Ishkhanyan A, Cesarano C. Generalized-Hypergeometric Solutions of the General Fuchsian Linear ODE Having Five Regular Singularities. Axioms. 2019; 8(3):102. https://doi.org/10.3390/axioms8030102
Chicago/Turabian StyleIshkhanyan, Artur, and Clemente Cesarano. 2019. "Generalized-Hypergeometric Solutions of the General Fuchsian Linear ODE Having Five Regular Singularities" Axioms 8, no. 3: 102. https://doi.org/10.3390/axioms8030102
APA StyleIshkhanyan, A., & Cesarano, C. (2019). Generalized-Hypergeometric Solutions of the General Fuchsian Linear ODE Having Five Regular Singularities. Axioms, 8(3), 102. https://doi.org/10.3390/axioms8030102