Generalized Hyers–Ulam Stability of the Additive Functional Equation
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics; Wiley: New York, NY, USA, 1964. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T. On the stability of the linear transformation in Banach algebras. J. Math. Soc. Japan 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Rassias, T.M.; Semrl, P. On the behavior of mappings which do not satisfy Hyers-Ulam stability. Proc. Am. Math. Soc. 1992, 114, 989–993. [Google Scholar] [CrossRef]
- Găvruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Maksa, G.; Páles, Z. Hyperstability of a class of linear functional equations. Acta Math. Acad. Paedagog. Nyházi 2001, 17, 107–112. [Google Scholar]
- Bourgin, D.G. Approximately isometric and multiplicative transformations on continuous function rings. Duke Math. J. 1949, 16, 385–397. [Google Scholar] [CrossRef]
- Brzdȩk, J. Remarks on hyperstability of the the Cauchy equation. Aequationes Math. 2013, 86, 255–267. [Google Scholar] [CrossRef]
- Brzdȩk, J. A hyperstability result for the Cauchy equation. Bull. Aust. Math. Soc. 2014, 89, 33–40. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-H.; Kim, G.H. Generalized Hyers–Ulam Stability of the Additive Functional Equation. Axioms 2019, 8, 76. https://doi.org/10.3390/axioms8020076
Lee Y-H, Kim GH. Generalized Hyers–Ulam Stability of the Additive Functional Equation. Axioms. 2019; 8(2):76. https://doi.org/10.3390/axioms8020076
Chicago/Turabian StyleLee, Yang-Hi, and Gwang Hui Kim. 2019. "Generalized Hyers–Ulam Stability of the Additive Functional Equation" Axioms 8, no. 2: 76. https://doi.org/10.3390/axioms8020076
APA StyleLee, Y. -H., & Kim, G. H. (2019). Generalized Hyers–Ulam Stability of the Additive Functional Equation. Axioms, 8(2), 76. https://doi.org/10.3390/axioms8020076