Riemann–Liouville Operator in Weighted Lp Spaces via the Jacobi Series Expansion
Abstract
:Blessed memory of Isai I. Mikaelyan is devoted.
1. Introduction
2. Preliminaries
2.1. Some Fractional Calculus Formulas
2.2. Riemann–Liouville Operator via the Jacobi Polynomials
3. Main Results
3.1. Mapping Theorems
3.2. Non-Simple Property Problem
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rubin, B.S. Fractional integrals in Hölder spaces with, and operators of potential type (in Russian). Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1974, 9, 308–324. [Google Scholar]
- Rubin, B.S. The fractional integrals and Riesz potentials with radial density in the spaces with power weight (in Russian). Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1986, 21, 488–503. [Google Scholar]
- Rubin, B.S. One-dimensional representation, inversion and certain properties of the Riesz potentials of radial functions. Math. Notes 1983, 34, 521–533. [Google Scholar] [CrossRef]
- Vaculov, B.G.; Samko, N. Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic. Math. Nachr. 2011, 284, 355–369. [Google Scholar]
- Samko, S.G.; Murdaev, K.M. Weighted Zigmund estimates for fractional differentiation and integration, and their applications. Proc. Steklov Inst. Math. 1989, 180, 233–235. [Google Scholar]
- Samko, S.G.; Vakulov, B.G. On equivalent norms in fractional order function spaces of continuous functions on the unit sphere. Fract. Calc. Appl. Anal. 2000, 4, 401–433. [Google Scholar]
- Karapetyants, N.K.; Rubin, B.S. Operators of fractional integration in spaces with a weight. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1984, 19, 31–43. (In Russian) [Google Scholar]
- Karapetyants, N.K.; Rubin, B.S. Radial Riesz potential on the disk and the fractional integration operators. Rep. Acad. Sci. USSR 1982, 25, 522–525. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Banerji, P.K.; Choudhary, S. On the fractional calculus of a general class of polynomials. Indian J. Pure Appl. Math. 1996, 27, 675–679. [Google Scholar]
- Behroozifar, M.; Ahmadpour, F. Comparative study on solving fractional differential equations via shifted Jacobi collocation method. Bull. Iran. Math. Soc. 2017, 43, 535–560. [Google Scholar]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. A new Jacobi operational matrix: An application for solving fractional differential equations. Appl. Math. Model. 2012, 36, 4931–4943. [Google Scholar] [CrossRef]
- Kazem, S.; Abbasbandy, S.; Kumar, S. Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 2013, 37, 5498–5510. [Google Scholar] [CrossRef]
- Saadatmandi, A.; Dehghan, M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59, 1326–1336. [Google Scholar] [CrossRef]
- Chen, S.; Shen, J.; Wang, L. Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 2016, 85, 1603–1638. [Google Scholar] [CrossRef]
- Aktaş, R.; Şahin, R.; Taşdelen, F. Radial Riesz potential on the disk and the fractional integral operators. J. Fract. Calc. Appl. 2013, 4, 335–348. [Google Scholar]
- Gogovcheva, E.; Boyadjiev, L. Fractional extensions of Jacobi polynomials and gauss hypergeometric function. Fract. Calc. Appl. Anal. 2005, 8, 431–438. [Google Scholar]
- Çekim, B.; Erkuş-Duman, E. Extended Jacobi functions via Riemann-liouville fractional derivative. Hindawi Publ. Corp. Appl. Anal. 2013, 2013, 350182. [Google Scholar] [CrossRef]
- Aronszajne, N.; Smith, K. Invariant subspaces of completely continuous operators. Ann. Math. 1954, 60, 345–350. [Google Scholar] [CrossRef]
- Bernstain, A.; Robinson, A. Solutions of invariant subspace problem of K.T. Smith and p. R. Halmos. Pac. J. Math. 1966, 16, 421–431. [Google Scholar] [CrossRef]
- Halmos, P. Invariant subspaces of polynomially compact operators. Pac. J. Math. 1966, 16, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Lomonosov, V.I. On invariant subspaces of operators family commuting with compact operator. Funct. Anal. Its Appl. 1973, 7, 55–56. [Google Scholar]
- Sz.-Nagy, B.; Foias, C. Sur les contractions de l’espace de Hilbert. V Transl. Bilaterales Acta Szeged 1962, 23, 106–129. [Google Scholar]
- Danford, N. Linear Operators, Part II; Mir: Moscow, Russia, 1966. [Google Scholar]
- Halmos, P. A Hilbert Space Problem Book; D. Van Nostrand Company, Inc.: Princeton, NJ, USA, 1967. [Google Scholar]
- Helson, H. Lectures on Invariant Subspaces; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Brodsky, M.S. On one problem of I.M. Gelfand. Russ. Math. Surv. 1957, 12, 129–132. [Google Scholar]
- Donoghue, W. The lattice of invariant subspaces of completely continuous quasi-nilpotent transformations. Pac. J. Math. 1957, 7, 1031–1035. [Google Scholar] [CrossRef]
- Kalisch, G. On similarity, reducing manifolds, and unitary equivalence of certain Volterra operators. Ann. Math. 1957, 66, 481–494. [Google Scholar] [CrossRef]
- Newman, J.; Rudin, W. Mean convergence of orthogonal series. Proc. Am. Math. Soc. 1952, 3, 219–222. [Google Scholar] [CrossRef]
- Pollard, H. The mean convergence of orthogonal series I. Trans. Am. Math. Soc. 1947, 62, 387–403. [Google Scholar] [CrossRef]
- Pollard, H. The mean convergence of orthogonal series II. Trans. Am. Math. Soc. 1948, 63, 355–367. [Google Scholar] [CrossRef]
- Pollard, H. The mean convergence of orthogonal series III. Duke Math. J. 1949, 16, 189–191. [Google Scholar] [CrossRef]
- Muckenhoupt, B. Mean Convergence of Jacobi Series. Proc. Am. Math. Soc. 1969, 23, 306–310. [Google Scholar] [CrossRef]
- Peetre, J. On the theory of spaces. J. Funct. Anal. 1969, 4, 71–87. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Zygmund, A. Some theorems on orthogonal systems. Fundam. Math. 1937, 28, 309–335. [Google Scholar]
- Suetin, P.K. Classical Orthogonal Polynomials; Nauka, Fizmatlit: Moscow, Russia, 1979. [Google Scholar]
- Gohberg, I.C.; Krein, M.G. Introduction to the Theory of Linear Non-Selfadjoint Operators in Hilbert Space; Nauka, Fizmatlit: Moscow, Russia, 1965. [Google Scholar]
- Kolmogoroff, A.N. Uber Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel. Nachr. Ges. Wiss. Gottingen 1931, 9, 60–63. [Google Scholar]
- Ahiezer, N.I.; Glazman, I.M. Theory of Linear Operators in Hilbert Space; Nauka, Fizmatlit: Moscow, Russia, 1966. [Google Scholar]
- Tricomi, F.G. Integral Equations; Interscience Publishers, Inc.: New York, NY, USA, 1957. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukushkin, M.V. Riemann–Liouville Operator in Weighted Lp Spaces via the Jacobi Series Expansion. Axioms 2019, 8, 75. https://doi.org/10.3390/axioms8020075
Kukushkin MV. Riemann–Liouville Operator in Weighted Lp Spaces via the Jacobi Series Expansion. Axioms. 2019; 8(2):75. https://doi.org/10.3390/axioms8020075
Chicago/Turabian StyleKukushkin, Maksim V. 2019. "Riemann–Liouville Operator in Weighted Lp Spaces via the Jacobi Series Expansion" Axioms 8, no. 2: 75. https://doi.org/10.3390/axioms8020075
APA StyleKukushkin, M. V. (2019). Riemann–Liouville Operator in Weighted Lp Spaces via the Jacobi Series Expansion. Axioms, 8(2), 75. https://doi.org/10.3390/axioms8020075