Recent Advances on the Results for Nonunique Fixed in Various Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- F is said to be an orbitally continuous mapping if
- (ii)
- If every Cauchy (fundamental) sequence of type converges, then metric space is orbitally complete
- ()
- is nondecreasing;
- ()
- for all .
- 1.
- ϕ is continuous at 0;
- 2.
- each iterate of ϕ, , is also a comparison function;
- 3.
- for all .
- for all ;
- if are sequences in such that , then
- (i)
- where are two continuous functions such that if and only if and for all
- (ii)
- where are two continuous functions with respect to each variable such that for all
- (iii)
- for all
- (iv)
- for all , where is a function such that for all .
- (v)
- for all , where is an upper semi-continuous mapping such that for all and .
- (vi)
- for all , where is a function such that exists and , for each .
3. Nonunique Fixed Point Results in Partial Metric Space
- 1.
- A sequence in S converges to if
- 2.
- A sequence in S is called a fundamental (or, Cauchy) sequence in if exists and is finite, that is,for each there is such that whenever
- 3.
- is called complete if every Cauchy sequence converges to a point such that .
- 1.
- A partial metric space is complete if and only if the corresponding metric space is complete.
- 2.
- A sequence in is a fundamental if and only if it forms a fundamental sequence in the corresponding metric space .
- 1.
- A self-mapping F, defined on a partial metric space , is said to be an orbitally continuous ifEquivalently, F is orbitally continuous provided that if with respect to then with respect to for each .
- 2.
- A partial metric space is said to be an orbitally complete if each fundamental sequence of type converges with respect to , that is, if there is such that
3.1. Ćirić Type Non-Unique Fixed Points on Partial Metric Spaces
3.2. Pachpatte Type Non-Unique Fixed Points on Partial Metric Spaces
4. Non Unique Fixed Points on -Branciari Distance Space
- 1.
- A sequence in a Branciari distance space converges to a limit if and only if as .
- 2.
- we say that a sequence , in a Branciari distance space , is fundamental if and only if for any given there exists positive integer such that for all .
- 3.
- We say that a Branciari distance space is complete whenever each fundamental sequence in is convergent.
- 4.
- A mapping is continuous if for any sequence in such that as , we have as .
- (p1)
- Since , we have . Thus, the function b is not continuous:
- (p2)
- There is no such that for and hence it is not Hausdorff.
- (p3)
- It is clear that the ball since there is no such that , i.e., open balls may not be an open set.
- (p4)
- The sequence converges to and hence not fundamental.
- (p1)
- Branciari distance is not continuous, (see e.g., Example 8)
- (p2)
- The limit in a Branciari distance space is not necessarily unique (i.e., it is not a Haussdorf, see e.g., Example 8)
- (p3)
- open ball need not to open set, (see e.g., Example 8)
- (p4)
- a convergent sequence in Branciari distance space needs not to be fundamental. (see e.g., Example 8)
- (p5)
- the mentioned topologies are incompatible (see e.g., Example 7 in [44]).
- 1.
- A sequence in a b-Branciari distance space is convergent to a limit x if and only if as .
- 2.
- A sequence in a b-Branciari distance space is fundamental (or, Cauchy) if and only if for every there exists positive integer such that for all .
- 3.
- A b-Branciari distance space is called complete if every fundamental sequence in is b-Branciari distance space convergent.
- 4.
- A mapping is continuous if for any sequence in such that as , we have as .
- 1.
- H is called orbitally continuous if
- 2.
- is called orbitally complete if every Cauchy sequence of type converges with respect to .
4.1. Ćirić Type Non-Unique Fixed Point Results
4.2. Ćirić-Jotić Type Non-Unique Fixed Point Results
4.3. Achari Type Non-Unique Fixed Point Results
4.4. Pachpatte Type Non-Unique Fixed Point Results
4.5. Karapınar Type Non-Unique Fixed Point Results
5. Conclusions
Funding
Conflicts of Interest
References
- Ćirić, L.B. On some maps with a non-unique fixed point. Publ. Inst. Math. 1974, 17, 52–58. [Google Scholar]
- Achari, J. On Ćirić’s non-unique fixed points. Mat. Vesnik. 1976, 13, 255–257. [Google Scholar]
- Alqahtani, B.; Fulga, A.; Karapınar, E. Non-Unique Fixed Point Results in Extended b-Metric Space. Mathematics 2018, 6, 68. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Rakočević, V. Nonunique Fixed Point Theorems on b-Metric Spaces via Simulation Functions. Jordan J. Math. Stat. 2019, in press. [Google Scholar]
- Alsulami, H.H.; Karapınar, E.; Rakočević, V. Ciric Type Nonunique Fixed Point Theorems on b-Metric Spaces. Filomat 2017, 31, 3147–3156. [Google Scholar] [CrossRef]
- Karapınar, E.; Romaguera, S. Nonunique fixed point theorems in partial metric spaces. Filomat 2013, 27, 1305–1314. [Google Scholar] [CrossRef]
- Gupta, S.; Ram, B. Non-unique fixed point theorems of Ćirić type, (Hindi). Vijnana Parishad Anusandhan Patrika 1998, 41, 217–231. [Google Scholar]
- Karapınar, E.; Agarwal, R.P. A note on Ćirić type non-unique fixed point theorems. Fixed Point Theory Appl. 2017, 2017, 20. [Google Scholar] [CrossRef]
- Liu, Z.Q. On Ćirić type mappings with a non-unique coincidence points. Mathematica (Cluj) 1993, 35, 221–225. [Google Scholar]
- Liu, Z.Q.; Guo, Z.; Kang, S.M.; Lee, S.K. On Ćirić type mappings with non-unique fixed and periodic points. Int. J. Pure Appl. Math. 2006, 26, 399–408. [Google Scholar]
- Pachpatte, B.G. On Ćirić type maps with a non-unique fixed point. Indian J. Pure Appl. Math. 1979, 10, 1039–1043. [Google Scholar]
- Zhang, F.; Kang, S.M.; Xie, L. Ćirić type mappings with a non-unique coincidence points. Fixed Point Theory Appl. 2007, 6, 187–190. [Google Scholar]
- Karapınar, E. Ćirić types non-unique fixed point results: A Review. Appl. Comput. Math. 2019, 1, 3–21. [Google Scholar]
- Ćirić, L.B.; Jotić, N. A further extension of maps with non-unique fixed points. Mat. Vesnik. 1998, 50, 1–4. [Google Scholar]
- Karapınar, E. A new non-unique fixed point theorem. J. Appl. Funct. Anal. 2012, 7, 92–97. [Google Scholar]
- Browder, F.E. On the convergence of successive approximations for nonlinear functional equations. Nederl. Akad. Wetensch. Ser. A71 Indag. Math. 1968, 30, 27–35. [Google Scholar] [CrossRef]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2001. [Google Scholar]
- Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theorems via simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef]
- Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 2015, 8, 1082–1094. [Google Scholar] [CrossRef] [Green Version]
- Alsulami, H.H.; Karapınar, E.; Khojasteh, F.; Roldán-López-de-Hierro, A.F. A proposal to the study of contractions in quasi-metric spaces. Discret. Dyn. Nat. Soc. 2014, 2014, 269286. [Google Scholar] [CrossRef]
- Roldán-López-de-Hierro, A.F.; Karapınar, E.; Roldán-López-de-Hierro, C.; Martínez-Moreno, J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 2015, 275, 345–355. [Google Scholar] [CrossRef]
- Matthews, S.G. Partial Metric Topology; Research Report 212; Department of Computer Science, University of Warwick: Coventry, UK, 1992. [Google Scholar]
- Matthews, S.G. Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Karapınar, E.; Shobkolaei, N.; Sedghi, S.; Vaezpour, S.M. A common fixed point theorem for cyclic operators on partial metric spaces. Filomat 2012, 26, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Shobkolaei, N.; Vaezpour, S.M.; Sedghi, S. A common fixed point theorem on ordered partial metric spaces. J. Basic Appl. Sci. Res. 2011, 1, 3433–3439. [Google Scholar]
- Hitzler, P.; Seda, A. Mathematical Aspects of Logic Programming Semantics, Studies in Informatics Series; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Karapınar, E.; Erhan, I.M. Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24, 1900–1904. [Google Scholar] [CrossRef]
- Karapınar, E. Ćirić types non-unique fixed point theorems on partial metric spaces. J. Nonlinear Sci. Appl. 2012, 5, 74–83. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 2000, 57, 31–37. [Google Scholar]
- Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2002, 29, 531–536. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Samet, B. Fixed points for generalized (α, ψ)-contractions on generalized metric spaces. J. Inequal. Appl. 2014, 2014, 229. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Lakzian, H. Fixed point results on the class of generalized metric spaces. Math. Sci. 2012, 6, 46. [Google Scholar] [CrossRef]
- Azam, A.; Arshad, M. Kannan fixed point theorems on generalized metric spaces. J. Nonlinear Sci. Appl. 2008, 1, 45–48. [Google Scholar] [CrossRef]
- Bilgili, N.; Karapınar, E. A note on “common fixed points for (ψ, α, β)-weakly contractive mappings in generalized metric spaces”. Fixed Point Theory Appl. 2013, 2013, 287. [Google Scholar] [CrossRef]
- Das, P.; Lahiri, B.K. Fixed point of a Ljubomir Ćirić’s quasi-contraction mapping in a generalized metric space. Publ. Math. Debrecen 2002, 61, 589–594. [Google Scholar]
- Jleli, M.; Samet, B. The Kannan’s fixed point theorem in a cone rectangular metric space. J. Nonlinear Sci. Appl. 2009, 2, 161–167. [Google Scholar] [CrossRef]
- Kadeburg, Z.; Radenovicć, S. On generalized metric spaces: A survey. TWMS J. Pure Appl. Math. 2014, 5, 3–13. [Google Scholar]
- Karapınar, E. Discussion on (α, ψ) contractions on generalized metric spaces. Abstr. Appl. Anal. 2014, 2014, 962784. [Google Scholar] [CrossRef]
- Karapınar, E. Fixed points results for α-admissible mapping of integral type on generalized metric spaces. Abstr. Appl. Anal. 2014, 2014, 141409. [Google Scholar] [CrossRef]
- Karapınar, E. On (α, ψ) contractions of integral type on generalized metric spaces. In Proceedings of the 9th ISAAC Congress, Krakow, Poland, 5–9 August 2013; Mityushevand, V., Ruzhansky, M., Eds.; Springer: Krakow, Poland, 2013. [Google Scholar]
- Kikina, L.; Kikina, K. A fixed point theorem in generalized metric space. Demonstr. Math. 2013, XLVI, 181–190. [Google Scholar] [CrossRef]
- Mihet, D. On Kannan fixed point principle in generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2, 92–96. [Google Scholar] [CrossRef]
- Samet, B. Discussion on: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces by A. Branciari. Publ. Math. Debrecen 2010, 76, 493–494. [Google Scholar]
- Suzuki, T. Generalized metric space do not have the compatible topology. Abstr. Appl. Anal. 2014, 2014, 458098. [Google Scholar] [CrossRef]
- Sarma, I.R.; Rao, J.M.; Rao, S.S. Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2, 180–182. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- George, R.; Radenovic, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Almezel, S.; Chen, C.M.; Karapınar, E.; Rakočević, V. Fixed point results for various α-admissible contractive mappings on metric-like spaces. Abstr. Appl. Anal. 2014, 2014, 379358. [Google Scholar]
- Liouville, J. Second mémoire sur le développement des fonctions ou parties de fonctions en séries dont divers termes sont assujettis á satisfaire a une m eme équation différentielle du second ordre contenant un paramétre variable. J. Math. Pure Appl. 1837, 2, 16–35. [Google Scholar]
- Picard, E. Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 1890, 6, 145–210. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Brouwer, L.E.J. Uber Abbildung von Mannigfaltigkeiten. Math Ann. 1912, 71, 97–115. [Google Scholar] [CrossRef]
- Schauder, J. Der Fixpunktsatz in Funktionalraumen. Stud. Math. 1930, 2, 171–180. [Google Scholar] [CrossRef]
- Poincaré, H. Surless courbes define barles equations differentiate less. J. Math. 1886, 2, 54–65. [Google Scholar]
- Bohl, P. über die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage. J. Reine Angew. Math. 1904, 127, 179–276. [Google Scholar]
- Hadamard, J. Note sur Quelques Applications de L’indice de Kronecker in Jules Tannery: Introduction á la Théorie des Fonctions D’une Variable, 2nd ed.; A. Hermann & Fils: Paris, France, 1910; Volume 2, pp. 437–477. [Google Scholar]
- Tarski, A. A lattice theoretical fixpoint theorem and its applications. Pac. J. Math. 1955, 5, 285–309. [Google Scholar] [CrossRef]
- Abedelljawad, T.; Karapınar, E.; Taş, K. Existence and uniqueness of common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24, 1894–1899. [Google Scholar] [CrossRef]
- Abedelljawad, T.; Karapınar, E.; Taş, K. A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 2012, 63, 716–719. [Google Scholar] [CrossRef] [Green Version]
- Afshari, H.; Aydi, H.; Karapınar, E. Existence of Fixed Points of Set-Valued Mappings in b-Metric Spaces. East Asian Math. J. 2016, 32, 319–332. [Google Scholar] [CrossRef]
- Aksoy, U.; Karapınar, E.; Erhan, I.M. Fixed points of generalized α-admissible contractions on b-metric spaces with an application to boundary value problems. J. Nonlinear Convex A 2016, 17, 1095–1108. [Google Scholar]
- Alharbi, A.S.; Alsulami, H.H.; Karapınar, E. On the Power of Simulation and Admissible Functions in Metric Fixed Point Theory. J. Funct. Spaces 2017, 2017, 2068163. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamram, T.; Karapınar, E. An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping. Abstr. Appl. Anal. 2014, 2014, 141489. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamran, T.; Nar, E.K. On (α, ψ, η)-contractive multivalued mappings. Fixed Point Theory Appl. 2014, 2014, 7. [Google Scholar] [CrossRef]
- Alsulami, H.; Gulyaz, S.; Karapınar, E.; Erhan, I.M. Fixed point theorems for a class of α-admissible contractions and applications to boundary value problem. Abstr. Appl. Anal. 2014, 2014, 187031. [Google Scholar] [CrossRef]
- Arshad, M.; Ameer, E.; Karapınar, E. Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces. J. Inequal. Appl. 2016, 2016, 63. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Yazidi, H. Modified F-Contractions via α-Admissible Mappings and Application to Integral Equations. Filomat 2017, 31, 1141–1148. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Zhang, D. A note on generalized admissible-Meir-Keeler-contractions in the context of generalized metric spaces. Results Math. 2017, 71, 73–92. [Google Scholar] [CrossRef]
- Aydi, H.; Jellali, M.; Karapınar, E. On fixed point results for α-implicit contractions in quasi-metric spaces and consequences. Nonlinear Anal. Model. Control. 2016, 21, 40–56. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, E.; Shatanawi, W. Coupled fixed point results for (ψ, φ)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 2011, 62, 4449–4460. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, M.B.E.; Mitrović, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
- Aydi, H.; Karapınar, M.B.E.; Moradi, S. A common fixed point for weak ϕ-contractions in b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Berinde, V. Generalized contractions in quasi-metric spaces, Seminar on Fixed Point Theory, Babeş-Bolyai University. Res. Sem. 1993, 3, 3–9. [Google Scholar]
- Berinde, V. Sequences of operators and fixed points in quasimetric spaces. Mathematica 1996, 41, 23–27. [Google Scholar]
- Berinde, V. Contracţii Generalizate şi Aplicaţii; Editura Cub Press: Baie Mare, Romania, 1997; Volume 2. [Google Scholar]
- Boriceanu, M. Strict fixed point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math. 2009, 4, 285–301. [Google Scholar]
- Boriceanu, M. Fixed point theory for multivalued generalized contraction on a set with two b-metrics. Mathematica 2009, 54, 3–14. [Google Scholar]
- Boriceanu, M.; Sel, A.P.; Rus, I.A. Fixed point theorems for some multivalued generalized contractions in b-metric spaces. Int. J. Math. Stat. 2010, 6, 65–76. [Google Scholar]
- Bota, M. Dynamical Aspects in the Theory of Multivalued Operators; Cluj University Press: Cluj-Napoka, Romania, 2010. [Google Scholar]
- Bota, M.; Molnár, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28. [Google Scholar]
- Bota, M.; Karapınar, E. A note on “Some results on multi-valued weakly Jungck mappings in b-metric space”. Cent. Eur. J. Math. 2013, 11, 1711–1712. [Google Scholar] [CrossRef]
- Karapınar, M.B.E.; Te, O.M.S. Ulam-Hyers stability for fixed point problems via α − ϕ-contractive mapping in b-metric spaces. Abstr. Appl. Anal. 2013, 2013, 855293. [Google Scholar]
- Bota, M.; Chifu, C.; Karapınar, E. Fixed point theorems for generalized (alpha-psi)-Ciric-type contractive multivalued operators in b-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 1165–1177. [Google Scholar] [CrossRef]
- Bourbaki, N. Topologie Générale; Herman: Paris, France, 1974. [Google Scholar]
- Caristi, J. Fixed point theorems for mapping satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215, 241–251. [Google Scholar] [CrossRef]
- Chen, C.M.; Abkar, A.; Ghods, S.; Karapınar, E. Fixed Point Theory for the α-Admissible Meir-Keeler Type Set Contractions Having KKM* Property on Almost Convex Sets. Appl. Math. Inf. Sci. 2017, 11, 171–176. [Google Scholar] [CrossRef]
- Ding, H.S.; Li, L. Coupled fixed point theorems in partially ordered cone metric spaces. Filomat 2011, 25, 137–149. [Google Scholar] [CrossRef]
- Gulyaz, S.; Karapınar, E.; Erhan, I.M. Generalized α-Meir-Keeler Contraction Mappings on Branciari b-metric Spaces. Filomat 2017, 31, 5445–5456. [Google Scholar] [CrossRef]
- Gulyaz, S.; Karapınar, E. Coupled fixed point result in partially ordered partial metric spaces through implicit function. Hacet. J. Math. Stat. 2013, 42, 347–357. [Google Scholar]
- Gulyaz, S.; Karapınar, E.; Rakocevic, V.; Salimi, P. Existence of a solution of integral equations via fixed point theorem. J. Inequal. Appl. 2013, 2013, 529. [Google Scholar] [CrossRef] [Green Version]
- Gulyaz, S.; Karapınar, E.; Yuce, I.S. A coupled coincidence point theorem in partially ordered metric spaces with an implicit relation. Fixed Point Theory Appl. 2013, 2013, 38. [Google Scholar] [CrossRef] [Green Version]
- Hadžić, O.; Pap, E. A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets Syst. 2002, 127, 333–344. [Google Scholar] [CrossRef]
- Hammache, K.; Karapınar, E.; Ould-Hammouda, A. On Admissible weak contractions in b-metric-like space. J. Math. Anal. 2017, 8, 167–180. [Google Scholar]
- Hicks, T.L. Fixed point theory in probabilistic metric spaces. Univ. Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 1983, 13, 63–72. [Google Scholar]
- Hicks, T.L. Fixed point theorems for quasi-metric spaces. Math. Japonica 1988, 33, 231–236. [Google Scholar]
- Ilić, D.; Pavlović, V.; Rakocecić, V. Some new extensions of Banach’s contraction principle to partial metric space. Appl. Math. Lett. 2011, 24, 1326–1330. [Google Scholar] [CrossRef]
- Janković, S.; Kadelburg, Z.; Radenović, S. On cone metric spaces: A survey. Nonlinear Anal. 2011, 74, 2591–2601. [Google Scholar] [CrossRef]
- Jleli, M.; Karapınar, E.; Samet, B. Best proximity points for generalized α − ψ-proximal contractive type mappings. J. Appl. Math. 2013, 2013, 534127. [Google Scholar] [CrossRef]
- Jleli, M.; Karapınar, E.; Samet, B. Fixed point results for α − ψλ contractions on gauge spaces and applications. Abstr. Appl. Anal. 2013, 2013, 730825. [Google Scholar] [CrossRef]
- Karapınar, E.; Piri, H.; AlSulami, H. Fixed Points of Generalized F-Suzuki Type Contraction in Complete b-Metric Spaces. Discret. Dyn. Nat. Soc. 2015, 2015, 969726. [Google Scholar]
- Karapınar, E.; Samet, B. Generalized α-ψ-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, 2012, 793486. [Google Scholar] [CrossRef]
- Karapınar, E. Fixed point theorems in cone Banach spaces. Fixed Point Theory Appl. 2009, 2009, 609281. [Google Scholar] [CrossRef]
- Karapınar, E. A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 2011, 12, 185–191. [Google Scholar] [CrossRef]
- Karapınar, E.; Yuksel, U. Some common fixed point theorems in partial metric spaces. J. Appl. Math. 2011, 2011, 263621. [Google Scholar] [CrossRef]
- Karapınar, E. Some fixed point theorems on the class of comparable partial metric spaces on comparable partial metric spaces. Appl. Gen. Topol. 2011, 12, 187–192. [Google Scholar]
- Karapınar, E. Weak ϕ-contraction on partial metric spaces. J. Comput. Anal. Appl. 2012, 14, 206–210. [Google Scholar]
- Karapınar, E.; Erhan, I.M. Cyclic Contractions and Fixed Point Theorems. Filomat 2012, 26, 777–782. [Google Scholar] [CrossRef]
- Karapınar, E. Some non-unique fixed point theorems of Ćiric type on cone metric spaces. Abstr. Appl. Anal. 2010, 2010, 123094. [Google Scholar] [CrossRef]
- Karapınar, E.; Kumam, P.; Salimi, P. On α − ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 94. [Google Scholar] [CrossRef]
- Karapinar, E.K.; Czerwik, S.; Aydi, H. (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef]
- Kopperman, R.; Matthews, S.G.; Pajoohesh, H. What Do Partial Metrics Represent?, Spatial Representation: Discrete vs. Continuous Computational Models, Dagstuhl Seminar Proceedings; No. 04351; Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI): Schloss Dagstuhl, Germany, 2005. [Google Scholar]
- Kutbi, M.A.; Karapınar, E.; Ahmed, J.; Azam, A. Some fixed point results for multi-valued mappings in b-metric spaces. J. Inequal. Appl. 2014, 2014, 126. [Google Scholar] [CrossRef]
- Künzi, H.P.A.; Pajoohesh, H.; Schellekens, M.P. Partial quasi-metrics. Theoret. Comput. Sci. 2006, 365, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Oltra, S.; Valero, O. Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36, 17–26. [Google Scholar]
- O’Neill, S.J. Two Topologies Are Better Than One; Tech. Report; University of Warwick: Coventry, UK, 1995. [Google Scholar]
- Popescu, O. Some new fixed point theorems for α-Geraghty-contraction type maps in metric spaces. Fixed Point Theory Appl. 2014, 2014, 190. [Google Scholar] [CrossRef]
- Romaguera, S. Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 2012, 159, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Romaguera, S. Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces. Appl. Gen. Topol. 2011, 12, 213–220. [Google Scholar] [CrossRef]
- Romaguera, S.; Schellekens, M. Partial metric monoids and semivaluation spaces. Topol. Appl. 2005, 153, 948–962. [Google Scholar] [CrossRef] [Green Version]
- Romaguera, S.; Valero, O. A quantitative computational model for complete partial metric spaces via formal balls. Math. Struct. Comput. Sci. 2009, 19, 541–563. [Google Scholar] [CrossRef]
- Samet, B. A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type. Int. J. Math. Anal. 2009, 26, 1265–1271. [Google Scholar]
- Suzuki, T. Some results on recent generalization of Banach contraction principle. In Proceedings of the 8th International Conference of Fixed Point Theory and its Applications, Chiang Mai, Thailand, 16–22 July 2007; pp. 751–761. [Google Scholar]
- Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 2008, 163, 1861–1869. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. A new type of fixed point theorem on metric spaces. Nonlinear Anal. 2009, 71, 5313–5317. [Google Scholar] [CrossRef]
- Turinici, M. Topics in Mathematical Analysis and Applications; Themistocles, M.R., László, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 94, p. 715746. [Google Scholar]
- Valero, O. On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 2005, 6, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.A. On semimetric spaces. Am. J. Math. 1931, 53, 361–373. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapınar, E. Recent Advances on the Results for Nonunique Fixed in Various Spaces. Axioms 2019, 8, 72. https://doi.org/10.3390/axioms8020072
Karapınar E. Recent Advances on the Results for Nonunique Fixed in Various Spaces. Axioms. 2019; 8(2):72. https://doi.org/10.3390/axioms8020072
Chicago/Turabian StyleKarapınar, Erdal. 2019. "Recent Advances on the Results for Nonunique Fixed in Various Spaces" Axioms 8, no. 2: 72. https://doi.org/10.3390/axioms8020072
APA StyleKarapınar, E. (2019). Recent Advances on the Results for Nonunique Fixed in Various Spaces. Axioms, 8(2), 72. https://doi.org/10.3390/axioms8020072