Some Features of Rank One Real Solvable Cohomologically Rigid Lie Algebras with a Nilradical Contracting onto the Model Filiform Lie Algebra Qn
Abstract
:1. Introduction
1.1. Solvable Real (Rigid) Lie Algebras
1.2. Cohomologically Rigid Lie Algebras
2. Rigid Lie Algebras with Filiform Nilradical
- ():
- :
3. Cohomologically Rigid Rank One Lie Algebras with Given Eigenvalue Spectrum
4. A Case Study:
4.1.
- . There is only one solution, corresponding to . A short computation shows that .
- . The Jacobi conditions in Equation (35) reduce to the equationsThere are only two solutions corresponding to the triples and . Both Lie algebras are cohomologically rigid.
- . In this case, the Jacobi conditions lead to the systemIt admits four independent solutions, two of which are complex conjugate and two real non-rational solutions given byAll these Lie algebras can be verified to have a vanishing second cohomology space, hence they are cohomologically rigid.
- For , the Jacobi conditions have only the trivial solution , implying that there are no rank one solvable Lie algebras with the eigenvalues in Equation (38).
4.2.
- For , the Jacobi conditions are trivially satisfied for any values of the variables and , hence the Lie algebra is not rigid.
- . The Jacobi conditions reduce to the equations:
- . Three quadratic equations are obtained:There are four solutions, corresponding to the valuesAll the resulting solvable Lie algebras are verified to have a vanishing second cohomology space, from which their cohomological rigidity follows.
- For , the Jacobi conditions lead to five independent quadratic equationsThis system admits only two nontrivial solutionsAgain, the computation shows that the second cohomology space vanishes in both cases.
4.3.
- For there is only one nontrivial solution to the Jacobi conditions, given by . The corresponding solvable Lie algebra has vanishing cohomology.
- For , the Jacobi conditions are trivially satisfied for any values of the variables and , hence the Lie algebra is not rigid.
- For , we obtain parameterized families and no solutions with vanishing cohomology exist.
- For , we obtain four nontrivial solutions to the Jacobi conditions, two real and two complex ones, respectively:The corresponding Lie algebras (complex and real) all satisfy the Richardson criterion and are cohomologically rigid.
- For , the Jacobi conditions admit two nontrivial solutionsIn addition, in this case, the corresponding solvable Lie algebras satisfy .
- Finally, for any , the only solution to the system of Jacobi equations is given by , corresponding to the rank two model algebra . Hence, no rank one solvable algebras with the given eigenvalues exist.
4.4.
- For and 16, we obtain parameterized families of nilpotent algebras that can be deformed into each other. No cohomologically rigid Lie algebras exist.
- If , Equation (35) admits a two-parameter family of solutions, as well as two isolated solutionsThe solvable Lie algebras corresponding to these values are not cohomologically rigid, as they both satisfy . Moreover, they can be deformed into the family, so that they are not geometrically rigid.
- The Jacobi conditions for admit two nontrivial solutionsThe corresponding solvable Lie algebras satisfy in both cases .
- For , we find two nontrivial solutions to Equation (35)In both cases, the solutions lead to cohomologically rigid Lie algebras.
- For the only nontrivial solution is given byIf we compute the cohomology of the associated solvable Lie algebra , we find that it does not vanish, but satisfies . However, this Lie algebra is always geometrically rigid, as can be shown with a topological argument (see, for instance, the argument in [37], which is also valid for this case).
- For the only nontrivial solution is again
- 1.
- If is even and , then is isomorphic to .
- 2.
- If is odd and , then is either isomorphic to or to the Lie algebra with brackets
5. Cohomologically Rigid Algebras in Dimension
6. Some Series of Rigid Lie Algebras with
- 1.
- For odd and dimension :
- 2.
- For odd and dimension :
- 3.
- For odd and dimension :
- 4.
- For odd and dimension :
- 5.
- For even and dimension :
- 6.
- For even and dimension :
- 7.
- For even and dimension :
- 8.
- For even and dimension :
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carles, R. Sur certaines classes d’orbites ouvertes dans les variétés d’algèbres de Lie. C. R. Acad. Sci. Paris 1981, 293, 545–547. [Google Scholar]
- Segal, I.E. A class of operators which are determined by groups. Duke Math. J. 1951, 18, 221–265. [Google Scholar] [CrossRef]
- Koszul, J.L. Homologie et cohomologie des algèbres de Lie. Bull. Soc. Math. Fr. 1950, 78, 65–127. [Google Scholar] [CrossRef]
- Fialowski, A. Deformations and contractions of algebraic structures. Proc. Steklov Inst. Math. 2014, 286, 240–252. [Google Scholar] [CrossRef]
- Gerstenhaber, M. On the deformations of rings and algebras. Ann. Math. 1964, 79, 59–103. [Google Scholar] [CrossRef]
- Verona, A. Introducere in Coomologia Algebrelor Lie; Editura Academiei Rep. Soc.: Bucharest, Romania, 1974. [Google Scholar]
- Zusmanovich, P. A converse to the second Whitehead Lemma. J. Lie Theory 2008, 18, 295–299. [Google Scholar]
- Carles, R. Déformations dans les schémas définis par les identités de Jacobi. Ann. Math. Blaise Pascal 1996, 3, 33–62. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Goze, M. Le rang du système linéaire des racines d’une algèbre de Lie rigide résoluble complexe. Commun. Algebra 1992, 20, 875–887. [Google Scholar] [CrossRef]
- Favre, G. Système des poids sur une algèbre de Lie nilpotente. Manuscr. Math. 1973, 9, 53–90. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R. Cohomologically rigid solvable real Lie algebras with a nilradical of arbitrary characteristic sequence. Linear Algebra Appl. 2016, 488, 135–147. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R. Rigidity-preserving and cohomology-decreasing extensions of solvable rigid Lie algebras. Linear Multilinear Algebra 2017, 66, 525–539. [Google Scholar] [CrossRef]
- Carles, R. Sur certaines classes d’algèbres de Lie rigides. Math. Ann. 1985, 272, 477–488. [Google Scholar] [CrossRef]
- Carles, R. Sur la cohomologie d’une nouvelle classe d’algèbres de Lie qui généralisent les sous-algèbres de Borel. J. Algebra 1993, 154, 310–334. [Google Scholar] [CrossRef]
- Goze, M.; Ancochea, J.M. Algèbres de Lie rigides dont le nilradical est filiforme. C. R. Acad. Sci. Paris 1991, 312, 21–24. [Google Scholar]
- Goze, M.; Ancochea, J.M. On the classification of rigid Lie algebras. J. Algebra 2001, 245, 68–91. [Google Scholar] [CrossRef]
- Nijenhuis, A.; Richardson, R.W. Deformations of Lie algebra structures. J. Math. Mech. 1967, 17, 89–105. [Google Scholar] [CrossRef]
- Page, S.S. A characterization of rigid algebras. J. Lond. Math. Soc. 1970, 2, 237–240. [Google Scholar] [CrossRef]
- Rauch, G. Effacement et déformation. Ann. Inst. Fourier 1972, 22, 239–269. [Google Scholar] [CrossRef] [Green Version]
- Richardson, R.W. On the rigidity of semi-direct products of Lie algebras. Pac. J. Math. 1967, 22, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Goze, M.; Ancochea, J.M. On the nonrationality of rigid Lie algebras. Proc. Am. Math. Soc. 1999, 127, 2611–2618. [Google Scholar]
- Vergne, M. Cohomologie des algèbres de Lie nilpotentes. Application á l’étude de la variété des algébres de Lie nilpotentes. Bull. Soc. Math. France 1970, 98, 81–116. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Goze, M. Algorithme de construction des algèbres de Lie rigides. Publ. Math. Univ. Paris VII 1989, 31, 285–306. [Google Scholar]
- Ancochea, J.M.; Campoamor-Stursberg, R.; Oviaño García, F. New examples of rank one solvable real rigid Lie algebras possessing a nonvanishing Chevalley cohomology. Appl. Math. Comput. 2018, 339, 431–440. [Google Scholar]
- Mal’cev, A.I. Solvable Lie algebras. Izv. Akad. Nauk SSSR 1945, 9, 329–356. [Google Scholar]
- Šnobl, L.; Winternitz, P. Classification and Identification of Lie Algebras; CRC Monograph Series; American Mathematical Society: Providence, RI, USA, 2014; Volume 33. [Google Scholar]
- Carles, R. Sur la structure des algèbres de Lie rigides. Ann. Inst. Fourier 1984, 34, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Azcárraga, J.A.; Izquierdo, J.M. Lie Groups, Lie Algebras, Cohomology and Some Applications to Physics; Cambridge Univeisity Press: Cambridge, UK, 1995. [Google Scholar]
- Campoamor-Stursberg, R. A comment concerning cohomology and invariants of Lie algebras with respect to contractions and deformations. Phys. Lett. A 2007, 362, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Fialowski, A.; de Montigny, M. On deformations and contractions of Lie algebras. J. Phys. A Math. Gen. 2005, 38, 6335–6349. [Google Scholar] [CrossRef]
- Weimar-Woods, E. Contractions, generalized Inönü-Wigner contractions and deformations of finite-dimensional Lie algebras. Rev. Math. Phys. 2000, 12, 1505–1529. [Google Scholar] [CrossRef]
- Tolpigo, A.K. On the cohomology of parabolic Lie algebras. Mat. Zamet. 1972, 12, 251–255. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R.; Garcia Vergnolle, L.; Goze, M. Algèbres résolubles réelles algébriquement rigides. Monatsh. Math. 2007, 152, 187–195. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R.; Garcia Vergnolle, L. Les algèbres de Lie résolubles rigides réelles ne sont pas nécessairement complètement résolubles. Linear Algebra Appl. 2006, 418, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Ancochea, J.M.; Campoamor-Stursberg, R. Classification of solvable real rigid Lie algebras with a nilradical of dimension n ≤ 6. Linear Algebra Appl. 2015, 451, 54–75. [Google Scholar] [CrossRef]
- Bratzlavsky, F. Sur les algèbres admettant un tore d’automorphismes donné. J. Algebra 1974, 30, 305–316. [Google Scholar] [CrossRef]
- Carles, R. Un exemple d’algèbres de Lie résolubles rigides, au deuxième groupe de cohomologie non nul et pour lesquelles l’application quadratique de D.S. Rim est injective. C. R. Acad. Sci. Paris 2985, 300, 467–469. [Google Scholar]
- Rim, D.S. Deformation of transitive Lie algebras. Ann. Math. 1966, 83, 339–357. [Google Scholar] [CrossRef]
- Dozias, J. Sur les dérivations des algèbres de Lie. C. R. Acad. Sci. Paris 1964, 259, 2748–2750. [Google Scholar]
- Goze, M.; Hakimjanov, Yu. Sur les algèbres de Lie nilpotentes admettant un tore de dérivations. Manuscr. Math. 1994, 84, 115–124. [Google Scholar] [CrossRef]
- Grozman, P.; Leites, D. SuperLie and Problems (to Be) Solved with it, Preprint MPI-2003-39, MPIM-Bonn. Available online: www.mpim-bonn.mpg.de (accessed on 15 November 2018).
- Grozman, P.; Leites, D. MATHEMATICA aided study of Lie algebras and their cohomology. From supergravity to ballbearings and magnetic hydrodynamics. Trans. Eng. Sci. 1997, 15, 185–192. [Google Scholar]
- Carles, R.; Márquez García, M.C. Different methods for the study of obstructions in the schemes of Jacobi. Ann. Inst. Fourier 2011, 61, 453–490. [Google Scholar] [CrossRef] [Green Version]
k | s | ||
---|---|---|---|
22 | 6 | 7 | |
22 | 6 | 7 | |
22 | 6 | 7 | |
24 | 7 | 7 | |
24 | 7 | 7 | |
26 | 7 | 8 | |
26 | 7 | 8 | |
26 | 7 | 8 | |
26 | 7 | 8 | |
26 | 7 | 8 | |
26 | 8 | 8 | |
28 | 8 | 9 | |
28 | 8 | 9 | |
28 | 8 | 9 | |
28 | 8 | 9 | |
30 | 8 | 10 | |
30 | 8 | 10 | |
30 | 8 | 10 | |
30 | 9 | 9 | |
30 | 9 | 9 | |
30 | 9 | 9 | |
30 | 9 | 9 | |
30 | 9 | 9 |
k | s | ||
---|---|---|---|
32 | 9 | 10 | |
32 | 9 | 10 | |
32 | 9 | 10 | |
32 | 9 | 10 | |
32 | 10 | 10 | |
34 | 9 | 11 | |
34 | 9 | 11 | |
34 | 9 | 11 | |
34 | 9 | 11 | |
34 | 10 | 11 | |
34 | 10 | 11 | |
34 | 10 | 11 | |
34 | 10 | 11 | |
34 | 11 | 10 | |
36 | 10 | 12 | |
36 | 10 | 12 | |
36 | 10 | 12 | |
36 | 10 | 12 | |
36 | 10 | 12 | |
36 | 12 | 11 | |
38 | 10 | 13 | |
38 | 10 | 13 | |
38 | 10 | 13 | |
38 | 10 | 13 | |
38 | 11 | 12 | |
38 | 11 | 12 | |
38 | 11 | 12 | |
38 | 11 | 12 | |
38 | 11 | 12 | |
40 | 11 | 13 | |
40 | 11 | 13 | |
40 | 11 | 13 | |
40 | 11 | 13 | |
40 | 11 | 13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campoamor-Stursberg, R.; Oviaño García, F. Some Features of Rank One Real Solvable Cohomologically Rigid Lie Algebras with a Nilradical Contracting onto the Model Filiform Lie Algebra Qn. Axioms 2019, 8, 10. https://doi.org/10.3390/axioms8010010
Campoamor-Stursberg R, Oviaño García F. Some Features of Rank One Real Solvable Cohomologically Rigid Lie Algebras with a Nilradical Contracting onto the Model Filiform Lie Algebra Qn. Axioms. 2019; 8(1):10. https://doi.org/10.3390/axioms8010010
Chicago/Turabian StyleCampoamor-Stursberg, Rutwig, and Francisco Oviaño García. 2019. "Some Features of Rank One Real Solvable Cohomologically Rigid Lie Algebras with a Nilradical Contracting onto the Model Filiform Lie Algebra Qn" Axioms 8, no. 1: 10. https://doi.org/10.3390/axioms8010010
APA StyleCampoamor-Stursberg, R., & Oviaño García, F. (2019). Some Features of Rank One Real Solvable Cohomologically Rigid Lie Algebras with a Nilradical Contracting onto the Model Filiform Lie Algebra Qn. Axioms, 8(1), 10. https://doi.org/10.3390/axioms8010010