On Solutions to the Set-Theoretical Yang-Baxter Equation in Wajsberg-Algebras
Abstract
:1. Introduction
2. Preliminaries
- If , then
- If , then
- .
3. Solutions to the Yang-Baxter Equation in W-Algebras
- which is equivalent to
- By Proposition 3 (7), we already have that and . Thus, from definition of the join operator ∨, or and or .
- Case 1.
- Assume that and . Then by using , we get
- Case 2.
- Assume that and . Then by using , we have
- Case 3.
- Suppose that and . Then by using , we get
- Case 4.
- Suppose that and . Then by using , we get
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Perk, J.H.H.; Au, Y.H. Yang-Baxter Equations. In Encyclopedia of Mathematical Physics; Françoise, J.-P., Naber, G.L., Tsou, S.T., Eds.; Elseiver: Oxford, UK, 2006; Volume 5, pp. 465–473. [Google Scholar]
- Baxter, R.J. Exactly Solved Models in Statical Mechanics; Academy Press: London, UK, 1982. [Google Scholar]
- Baxter, R.J. Partition Function of the Eight-Vertex Lattice Model. Ann. Phys. 1972, 70, 193–228. [Google Scholar] [CrossRef]
- Yang, C.N. Some Exact Results for the Many-Body Problem in One Dimension with Repulsive Delta-Function Interaction. Phys. Rev. Lett. 1967, 19, 1312–1315. [Google Scholar] [CrossRef]
- Jimbio, M. Yang-Baxter Equation in Integrable Systems; Advanced Series in Mathematical Physics; World Scientific Publishing Co. Inc.: Singapore, 1990; Volume 10. [Google Scholar]
- Jimbio, M. Introduction to the Yang-Baxter Equation. Int. J. Mod. Phys. 1989, 4, 3759. [Google Scholar] [CrossRef]
- Lu, J.-H.; Yan, M.; Zhu, Y.-C. On the Set-Theoretical Yang-Baxter Equation. Duke Math. J. 2000, 104, 1–18. [Google Scholar]
- Nichita, F.F. Hopf algebras, Quantum Groups and Yang-Baxter Equations, 2014 (Special Issue). Available online: https://www.mdpi.com/journal/axioms/special_issue/hopf_algebras_2014 (accessed on 22 June 2017).
- Nichita, F.F. On the set-theoretical Yang-Baxter Equation. Acta Univ. Apulensis Math. Inf. 2003, 5, 97–100. [Google Scholar]
- Nichita, F.F. Yang-Baxter Equations, Computational Methods and Applications. Axioms 2015, 4, 423–435. [Google Scholar] [CrossRef]
- Oner, T.; Senturk, I.; Oner, G. An Independent Set of Axioms of MV-Algebras and Solutions of the Set-Theoretical Yang-Baxter Equation. Axioms 2017, 6, 17. [Google Scholar] [CrossRef]
- Gateva-Ivanova, T. Noetherian Properties of Skew-Polynomial Rings with Binomial Relations. Trans. Am. Math. Soc. 1994, 343, 203–219. [Google Scholar] [CrossRef]
- Gateva-Ivanova, T. Skew Polynomial Rings with Binomial Relations. J. Algebra 1996, 185, 710–753. [Google Scholar] [CrossRef]
- Gateva-Ivanova, T.; Van den Bergh, M. Semigroups of I-type. J. Algebra 1998, 206, 97–112. [Google Scholar] [CrossRef]
- Tate, J.; Van den Bergh, M. Homological Properties of Sklyanin Algebras. Invent. Math. 1996, 124, 619–647. [Google Scholar] [CrossRef]
- Etingof, P.; Schedler, T.; Soloviev, A. Set-Theoretical Solutions to the Quantum Yang-Baxter Equation. Duke Math. J. 1999, 100, 169–209. [Google Scholar] [CrossRef]
- Etingof, P.; Gelaki, S. A Method of Construction of Finite-Dimensional Triangular Semisimple Hopf Algebras. Math. Res. Lett. 1998, 5, 551–561. [Google Scholar] [CrossRef]
- Veselov, A.P. Yang-Baxter Maps and Integral Dynamics. Phys. Lett. A. 2003, 314, 214–221. [Google Scholar] [CrossRef]
- Etingof, P. Geometric Crystals and Set-Theoretical Solutions to the Quantum Yang-Baxter Equation. Comm. Algebra 2003, 31, 1961–1973. [Google Scholar] [CrossRef]
- Cignoli, R.L.O.; D’ottaviano, I.M.L.; Mundici, D. Algebraic Foundations of Many-Valued Reasoning; Kluwer Academic Publishers: Dordrech, The Netherlands, 2000. [Google Scholar]
- Radfar, A.; Rezaei, A.; Sadei, A.B. Extensions of BCK-algebras. Cogent Math. 2016. [Google Scholar] [CrossRef]
- Pałasiński, M. The variety of all commutative BCK-algebras is generated by its finite members as a quasivariety. Demonstr. Math. 2012, 45, 495–518. [Google Scholar] [CrossRef]
- Font, J.M.; Rodriguez, A.J.; Torrens, A. Wajsberg Algebras. Stochastica 1984, 8, 5–31. [Google Scholar]
- Solomon, M.; Nichita, F.F. On Transcendental Numbers: New Results and a Little History. Mathematics 2015. submitted. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oner, T.; Katican, T. On Solutions to the Set-Theoretical Yang-Baxter Equation in Wajsberg-Algebras. Axioms 2018, 7, 6. https://doi.org/10.3390/axioms7010006
Oner T, Katican T. On Solutions to the Set-Theoretical Yang-Baxter Equation in Wajsberg-Algebras. Axioms. 2018; 7(1):6. https://doi.org/10.3390/axioms7010006
Chicago/Turabian StyleOner, Tahsin, and Tugce Katican. 2018. "On Solutions to the Set-Theoretical Yang-Baxter Equation in Wajsberg-Algebras" Axioms 7, no. 1: 6. https://doi.org/10.3390/axioms7010006
APA StyleOner, T., & Katican, T. (2018). On Solutions to the Set-Theoretical Yang-Baxter Equation in Wajsberg-Algebras. Axioms, 7(1), 6. https://doi.org/10.3390/axioms7010006