Next Article in Journal
On Transcendental Numbers: New Results and a Little History
Next Article in Special Issue
Multi-Attribute Decision-Making Method Based on Neutrosophic Soft Rough Information
Previous Article in Journal / Special Issue
Neutrosophic Number Nonlinear Programming Problems and Their General Solution Methods under Neutrosophic Number Environments
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Neutrosophic Soft Rough Graphs with Application

1
Department of Mathematics, University of the Punjab, New Campus, Lahore 54590, Pakistan
2
Mathematics & Science Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA
*
Author to whom correspondence should be addressed.
Axioms 2018, 7(1), 14; https://doi.org/10.3390/axioms7010014
Submission received: 27 January 2018 / Revised: 17 February 2018 / Accepted: 23 February 2018 / Published: 26 February 2018
(This article belongs to the Special Issue Neutrosophic Multi-Criteria Decision Making)

Abstract

:
Neutrosophic sets (NSs) handle uncertain information while fuzzy sets (FSs) and intuitionistic fuzzy sets (IFs) fail to handle indeterminate information. Soft set theory, neutrosophic set theory, and rough set theory are different mathematical models for handling uncertainties and they are mutually related. The neutrosophic soft rough set (NSRS) model is a hybrid model by combining neutrosophic soft sets with rough sets. We apply neutrosophic soft rough sets to graphs. In this research paper, we introduce the idea of neutrosophic soft rough graphs (NSRGs) and describe different methods of their construction. We consider the application of NSRG in decision-making problems. In particular, we develop efficient algorithms to solve decision-making problems.

1. Introduction

Smarandache [1] initiated the concept of neutrosophic set (NS). Smarandache’s NS is characterized by three parts: truth, indeterminacy, and falsity. Truth, indeterminacy and falsity membership values behave independently and deal with problems having uncertain, indeterminant and imprecise data. Wang et al. [2] gave a new concept of single valued neutrosophic sets (SVNSs) and defined the set theoretic operators on an instance of NS called SVNS. Peng et al. [3] discussed the operations of simplified neutrosophic numbers and introduced an outranking idea of simplified neutrosophic numbers.
Molodtsov [4] introduced the notion of soft set (SS) as a novel mathematical approach for handling uncertainties. Molodtsov’s SSs gave us a new technique for dealing with uncertainty from the viewpoint of parameters. Maji et al. [5,6,7] introduced neutrosophic soft sets (NSSs), intuitionistic fuzzy soft sets and fuzzy soft sets (FSSs). In [8], Sahin and Kucuk presented NSS in the form of neutrosophic relations.
Theory of rough set (RS) was proposed by Pawlak [9] in 1982. Rough set theory is used to study the intelligence systems containing incomplete, uncertain or inexact information. The lower and upper approximation operators of RSs are used for managing hidden information in a system. Feng et al. [10] took a significant step to introduce parametrization tools in RSs. Meng et al. [11] provide further discussion of the combination of SSs, RSs and FSs. The existing results of RSs and other extended RSs such as rough fuzzy sets, generalized rough fuzzy sets, soft fuzzy rough sets and intuitionistic fuzzy rough sets based decision-making models have their advantages and limitations [12,13]. In a different way, rough set approximations have been constructed into the intuitionistic fuzzy environment and are known as intuitionistic fuzzy rough sets and rough intuitionistic fuzzy sets [14,15]. Zhang et al. [16,17] presented the notions of soft rough sets, soft rough intuitionistic fuzzy sets, intuitionistic fuzzy soft rough sets, its application in decision-making, and also introduced generalized intuitionistic fuzzy soft rough sets. Broumi et al. [18,19] developed a hybrid structure by combining RSs and NSs, called RNSs, they also presented interval valued neutrosophic soft rough sets by combining interval valued neutrosophic soft sets and RSs. Yang et al. [20] proposed single valued neutrosophic rough sets (SVNRSs) by combining SVNSs and RSs and defined SVNRSs on two universes and established an algorithm for a decision-making problem based on SVNRSs on two universes. Akram and Nawaz [21] have introduced the concept of soft graphs and some operation on soft graphs. Certain concepts of fuzzy soft graphs and intuitionistic fuzzy soft graphs are discussed in [22,23,24]. Akram and Shahzadi [25] have introduced neutrosophic soft graphs. Zafar and Akram [26] introduced a rough fuzzy digraph and several basic notions concerning rough fuzzy digraphs. In this research paper, a neutrosophic soft rough set is a generalization of a neutrosophic rough set, and we introduce the idea of neutrosophic soft rough graphs (NSRGs) that are made by combining NSRSs with graphs and describe different methods of their construction. We consider the application of NSRG in decision-making problems and resolve the problem. In particular, we develop efficient algorithms to solve decision-making problems.
For other notations, terminologies and applications not mentioned in the paper, the readers are referred to [27,28,29,30,31,32,33,34,35].

2. Neutrosophic Soft Rough Information

In this section, we will introduce the notions of neutrosophic soft rough relation (NSRR), and NSRGs.
Definition 1.
Let Y be an initial universal set, P a universal set of parameters and M P . For an arbitrary neutrosophic soft relation Q over Y × M , ( Y , M , Q ) is called neutrosophic soft approximation space (NSAS).
For any NS A N ( M ) , we define the upper neutrosophic soft rough approximation (UNSRA) and the lower neutrosophic soft rough approximation (LNSRA) operators of A with respect to ( Y , M , Q ) denoted by Q ¯ ( A ) and Q ̲ ( A ) , respectively as follows:
Q ¯ ( A ) = { ( u , T Q ¯ ( A ) ( u ) , I Q ¯ ( A ) ( u ) , F Q ¯ ( A ) ( u ) ) | u Y } , Q ̲ ( A ) = { ( u , T Q ̲ ( A ) ( u ) , I Q ̲ ( A ) ( u ) , F Q ̲ ( A ) ( u ) ) | u Y } ,
where
T Q ¯ ( A ) ( u ) = e M T Q ( A ) ( u , e ) T A ( e ) , I Q ¯ ( A ) ( u ) = e M I Q ( A ) ( u , e ) I A ( e ) , F Q ¯ ( A ) ( u ) = e M F Q ( A ) ( u , e ) F A ( e ) ; T Q ̲ ( A ) ( u ) = e M F Q ( A ) ( u , e ) T A ( e ) , I Q ̲ ( A ) ( u ) = e M ( 1 I Q ( A ) ( u , e ) ) I A ( e ) , F Q ̲ ( A ) ( u ) = e M T Q ( A ) ( u , e ) F A ( e ) .
The pair ( Q ̲ ( A ) , Q ¯ ( A ) ) is called NSRS of A w.r.t ( Y , M , Q ) , Q ̲ and Q ¯ are referred to as the LNSRA and the UNSRA operators, respectively.
Example 1.
Suppose that Y = { w 1 , w 2 , w 3 , w 4 } is the set of careers under consideration, and Mr. X wants to select the best suitable career. M = { e 1 , e 2 , e 3 } is a set of decision parameters. Mr. X describes the “most suitable career" by defining a neutrosophic soft set ( Q , M ) on Y that is a neutrosophic relation from Y to M as shown in Table 1.
Now, Mr. X gives the most favorable decision object A, which is an NS on M defined as follows: A = { ( e 1 , 0.5 , 0.2 , 0.4 ) , ( e 2 , 0.2 , 0.3 , 0.1 ) , ( e 3 , 0.2 , 0.4 , 0.6 ) } . By Definition 1, we have
T Q ¯ ( A ) ( w 1 ) = 0.3 , I Q ¯ ( A ) ( w 1 ) = 0.4 , F Q ¯ ( A ) ( w 1 ) = 0.4 ,
T Q ¯ ( A ) ( w 2 ) = 0.4 , I Q ¯ ( A ) ( w 2 ) = 0.2 , F Q ¯ ( A ) ( w 2 ) = 0.4 ,
T Q ¯ ( A ) ( w 3 ) = 0.2 , I Q ¯ ( A ) ( w 3 ) = 0.4 , F Q ¯ ( A ) ( w 3 ) = 0.3 ,
T Q ¯ ( A ) ( w 4 ) = 0.2 , I Q ¯ ( A ) ( w 4 ) = 0.3 , F Q ¯ ( A ) ( w 4 ) = 0.4 .
Similarly,
T Q ̲ ( A ) ( w 1 ) = 0.4 , I Q ̲ ( A ) ( w 1 ) = 0.4 , F Q ̲ ( A ) ( w 1 ) = 0.3 ,
T Q ̲ ( A ) ( w 2 ) = 0.5 , I Q ̲ ( A ) ( w 2 ) = 0.4 , F Q ̲ ( A ) ( w 2 ) = 0.4 ,
T Q ̲ ( A ) ( w 3 ) = 0.4 , I Q ̲ ( A ) ( w 3 ) = 0.4 , F Q ̲ ( A ) ( w 3 ) = 0.3 ,
T Q ̲ ( A ) ( w 4 ) = 0.5 , I Q ̲ ( A ) ( w 4 ) = 0.4 , F Q ̲ ( A ) ( w 4 ) = 0.5 .
Thus, we obtain
Q ¯ ( A ) = { ( w 1 , 0.3 , 0.4 , 0.4 ) , ( w 2 , 0.4 , 0.2 , 0.4 ) , ( w 3 , 0.2 , 0.4 , 0.3 ) , ( w 4 , 0.2 , 0.3 , 0.4 ) } , Q ̲ ( A ) = { ( w 1 , 0.4 , 0.4 , 0.3 ) , ( w 2 , 0.5 , 0.4 , 0.4 ) , ( w 3 , 0.4 , 0.4 , 0.3 ) , ( w 4 , 0.5 , 0.4 , 0.5 ) } .
Hence, ( Q ̲ ( A ) , Q ¯ ( A ) ) is an NSRS of A.
The conventional neutrosophic soft set is a mapping from a parameter to the neutrosophic subset of the universe and letting ( Q , M ) be neutrosophic soft set. Now, we present the constructive definition of neutrosophic soft rough relation by using a neutrosphic soft relation S from M × M = M ´ to N ( Y × Y = Y ´ ) , where Y is a universal set and M be a set of parameters.
Definition 2.
A neutrosophic soft rough relation ( S ̲ ( B ) , S ¯ ( B ) ) on Y is an NSRS, S : M ´ N ( Y ´ ) is a neutrosophic soft relation on Y defined by
S ( e i e j ) = { u i u j | u i Q ( e i ) , u j Q ( e j ) } , u i u j Y ´ , such that T S ( u i u j , e i e j ) min { T Q ( u i , e i ) , T Q ( u j , e j ) } I S ( u i u j , e i e j ) max { I Q ( u i , e i ) , I Q ( u j , e j ) } F S ( u i u j , e i e j ) max { F Q ( u i , e i ) , F Q ( u j , e j ) } . For any B N ( M ´ ) , B = { e i e j , T B ( e i e j ) , I B ( e i e j ) , F B ( e i e j ) u i u j M ´ } , T B ( e i e j ) min { T A ( e i ) , T A ( e j ) } , I B ( e i e j ) max { I A ( e i ) , I A ( e j ) } , F B ( e i e j ) max { F A ( e i ) , F A ( e j ) } .
The UNSA and the LNSA of B w.r.t ( Y ´ , M ´ , S ) are defined as follows:
S ¯ ( B ) = { ( u i u j , T S ¯ ( B ) ( u i u j ) , I S ¯ ( B ) ( u i u j ) , F S ¯ ( B ) ( u i u j ) ) | u i u j Y ´ } ,
S ̲ ( B ) = { ( u i u j , T S ̲ ( B ) ( u i u j ) , I S ̲ ( B ) ( u i u j ) , F S ̲ ( B ) ( u i u j ) ) | u i u j Y ´ } ,
where
T S ¯ ( B ) ( u i u j ) = e i e j M ´ T S ( u i u j , e i e j ) T B ( e i e j ) , I S ¯ ( B ) ( u i u j ) = e i e j M ˜ I S ( u i u j , e i e j ) I B ( e i e j ) , F S ¯ ( B ) ( u i u j ) = e i e j M ˜ F S ( u i u j , e i e j ) F B ( e i e j ) ;
T S ̲ ( B ) ( u i u j ) = e i e j M ´ F S ( u i u j , e i e j ) T B ( e i e j ) , I S ̲ ( B ) ( u i u j ) = e i e j M ˜ ( 1 I S ( u i u j , e i e j ) ) I B ( e i e j ) , F S ̲ ( B ) ( u i u j ) = e i e j M ˜ T S ( u i u j , e i e j ) F B ( e i e j ) .
The pair ( S ̲ ( B ) , S ¯ ( B ) ) is called NSRR and S ̲ , S ¯ : N ( M ´ ) N ( Y ´ ) are called the LNSRA and the UNSRA operators, respectively.
Remark 1.
Consider an NS B on M ´ and an NS A on M , according to the definition of NSRR, we get
T S ¯ ( B ) ( u i u j ) min { T S ¯ ( A ) ( u i ) , T S ¯ ( A ) ( u j ) } , I S ¯ ( B ) ( u i u j ) max { I S ¯ ( A ) ( u i ) , I S ¯ ( A ) ( u j ) } , F S ¯ ( B ) ( u i u j ) max { F S ¯ ( A ) ( u i ) . F S ¯ ( A ) ( u j ) } .
Similarly, for LNSRA operator S ̲ ( B ) ,
T S ̲ ( B ) ( u i u j ) min { T S ̲ ( A ) ( u i ) , T S ̲ ( A ) ( u j ) } , I S ̲ ( B ) ( u i u j ) max { I S ̲ ( A ) ( u i ) , I S ̲ ( A ) ( u j ) } , F S ̲ ( B ) ( u i u j ) max { F S ̲ ( A ) ( u i ) . F S ̲ ( A ) ( u j ) } .
Example 2.
Let Y = { u 1 , u 2 , u 3 } be a universal set and M = { e 1 , e 2 , e 3 } a set of parameters. A neutrosophic soft set ( Q , M ) on Y can be defined in tabular form in Table 2 as follows:
Let E = { u 1 u 2 , u 2 u 3 , u 2 u 2 , u 3 u 2 } Y ´ and L = { e 1 e 3 , e 2 e 1 , e 3 e 2 } M ´ .
Then, a soft relation S on E (from L to E) can be defined in Table 3 as follows:
Let A = { ( e 1 , 0.2 , 0.4 , 0.6 ) , ( e 2 , 0.4 , 0.5 , 0.2 ) , ( e 3 , 0.1 , 0.2 , 0.4 ) } be an NS on M , then S ¯ ( A ) = { ( u 1 , 0.4 , 0.2 , 0.4 ) , ( u 2 , 0.3 , 0.4 , 0.3 ) , ( u 3 , 0.4 , 0.2 , 0.3 ) } , S ̲ ( A ) = { ( u 1 , 0.3 , 0.5 , 0.4 ) , ( u 2 , 0.2 , 0.5 , 0.6 ) , ( u 3 , 0.4 , 0.5 , 0.6 ) } .
Let B = { ( e 1 e 3 , 0.1 , 0.3 , 0.5 ) , ( e 2 e 1 , 0.2 , 0.4 , 0.3 ) , ( e 3 e 2 , 0.1 , 0.2 , 0.3 ) } be an NS on L , then S ¯ ( B ) = { ( u 1 u 2 , 0.2 , 0.3 , 0.3 ) , ( u 2 u 3 , 0.2 , 0.3 , 0.3 ) , ( u 2 u 2 , 0.2 , 0.4 , 0.3 ) , ( u 3 u 2 , 0.2 , 0.4 , 0.3 ) } , S ̲ ( B ) = { ( u 1 u 2 , 0.2 , 0.4 , 0.4 ) , ( u 2 u 3 , 0.2 , 0.4 , 0.5 ) , ( u 2 u 2 , 0.3 , 0.4 , 0.5 ) , ( u 3 u 2 , 0.2 , 0.4 , 0.5 ) } .
Hence, S ( B ) = ( S ̲ ( B ) , S ¯ ( B ) ) is NSRR.
Definition 3.
A neutrosophic soft rough graph (NSRG) on a non-empty V is an 4-ordered tuple ( V , M , Q ( A ) , S ( B ) ) such that
(i)
M is a set of parameters,
(ii)
Q is an arbitrary neutrosophic soft relation over V × M ,
(iii)
S is an arbitrary neutrosophic soft relation over V ´ × M ´ ,
(vi)
Q ( A ) = ( Q ̲ A , Q ¯ A ) is an NSRS of A,
(v)
S ( B ) = ( S ̲ B , S ¯ B ) is an NSRR on V ´ V × V ,
(iv)
G = ( Q ( A ) , S ( B ) ) is a neutrosophic soft rough graph, where G ̲ = ( Q ̲ A , S ̲ B ) and G ¯ = ( Q ¯ A , S ¯ B ) are lower neutrosophic approximate graph (LNAG) and upper neutrosophic approximate graph (UNAG), respectively of neutrosophic soft rough graph (NSRG) G = ( Q ( A ) , S ( B ) ) .
Example 3.
Let V = { v 1 , v 2 , v 3 , v 4 , v 5 , v 6 } be a vertex set and M = { e 1 , e 2 , e 3 } a set of parameters. A neutrosophic soft relation over V × M can be defined in tabular form in Table 4 as follows:
Let A = { ( e 1 , 0.5 , 0.4 , 0.6 ) , ( e 2 , 0.7 , 0.4 , 0.5 ) , ( e 3 , 0.6 , 0.2 , 0.5 ) } be an NS on M , then
S ¯ ( A ) = { ( v 1 , 0.5 , 0.4 , 0.5 ) , ( v 2 , 0.6 , 0.3 , 0.5 ) , ( v 3 , 0.7 , 0.4 , 0.5 ) , ( v 4 , 0.6 , 0.2 , 0.5 ) , ( v 5 , 0.5 , 0.4 , 0.5 ) , ( v 6 , 0.6 , 0.3 , 0.5 ) } , S ̲ ( A ) = { ( v 1 , 0.6 , 0.4 , 0.5 ) , ( v 2 , 0.5 , 0.4 , 0.6 ) , ( v 3 , 0.5 , 0.4 , 0.6 ) , ( v 4 , 0.5 , 0.4 , 0.5 ) , ( v 5 , 0.6 , 0.4 , 0.5 ) , ( v 6 , 0.6 , 0.4 , 0.5 ) } .
Let E = { v 1 v 1 , v 1 v 2 , v 2 v 1 , v 2 v 3 , v 4 v 5 , v 3 v 4 , v 5 v 2 , v 5 v 6 } V ´ and L = { e 1 e 3 , e 2 e 1 , e 3 e 2 } M ´ .
Then, a neutrosophic soft relation S on E (from L to E) can be defined in Table 5 and Table 6 as follows:
Let B = { ( e 1 e 2 , 0.4 , 0.4 , 0.5 ; ) , ( e 2 e 3 , 0.5 , 0.4 , 0.5 ) , ( e 1 e 3 , 0.5 , 0.2 , 0.5 ) } be an NS on L , then S ¯ B = { ( v 1 v 1 , 0.5 , 0.4 , 0.5 ) , ( v 1 v 2 , 0.4 , 0.2 , 0.5 ) , ( v 2 v 1 , 0.4 , 0.2 , 0.5 ) , ( v 2 v 3 , 0.5 , 0.3 , 0.5 ) , ( v 3 v 4 , 0.5 , 0.2 , 0.5 ) , ( v 4 v 5 , 0.4 , 0.3 , 0.5 ) , ( v 5 v 2 , 0.5 , 0.3 , 0.5 ) , ( v 5 v 6 , 0.5 , 0.3 , 0.5 ) } , S ̲ B = { ( v 1 v 1 , 0.4 , 0.4 , 0.5 ) ( v 1 v 2 , 0.5 , 0.4 , 0.4 ) , ( v 2 v 1 , 0.5 , 0.4 , 0.4 ) , ( v 2 v 3 , 0.4 , 0.4 , 0.5 ) , ( v 3 v 4 , 0.4 , 0.4 , 0.5 ) , ( v 4 v 5 , 0.4 , 0.4 , 0.4 ) , ( v 5 v 2 , 0.4 , 0.4 , 0.5 ) , ( v 5 v 6 , 0.4 , 0.4 , 0.5 ) } . Hence , S ( B ) = ( S ̲ B , S ¯ B ) is NSRR on V ´ .
Thus, G ̲ = ( Q ̲ A , S ̲ B ) and G ¯ = ( Q ¯ A , S ¯ B ) are LNAG and UNAG, respectively, are shown in Figure 1.
Hence, G = ( G ̲ , G ¯ ) is NSRG.
Definition 4.
Let G = ( V , M , Q , S ) be a neutrosophic soft rough graph on a non-empty set V. The order of G can be denoted by O ( G ) , defined by
O ( G ) = O ( G ¯ ) + O ( G ̲ ) , where O ( G ¯ ) = v V Q ¯ A ( v ) , O ( G ̲ ) = v V Q ̲ A ( v ) .
The size of neutrosophic soft rough graph G, denoted by S ( G ) , defined by
S ( G ) = ( S G ¯ + S G ̲ ) , where S ( G ¯ ) = u v E S ¯ B ( u v ) , S ( G ̲ ) = u v E S ̲ B ( u v ) .
Example 4.
Let G be a neutrosophic soft rough graph as shown in Figure 1. Then,
O ( G ¯ ) = ( 3.5 , 2.0 , 3.0 ) , O ( G ̲ ) = ( 3.3 , 2.4 , 3.2 ) , O ( G ) = O ( G ¯ ) + O ( G ̲ ) = ( 6.8 , 4.4 , 6.2 ) , and S ( G ¯ ) = ( 3.2 , 1.8 , 3.0 ) S ( G ̲ ) = ( 2.5 , 2.4 , 2.8 ) S ( G ) = S ( G ¯ ) + S ( G ̲ ) = ( 5.7 , 4.2 , 5.8 ) .
Definition 5.
Let G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) be two neutrosophic soft rough graphs on V. The union of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) , where G ̲ 1 G ̲ 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G ¯ 1 G ¯ 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ¯ B 2 ) are neutrosophic graphs, such that
(i) 
v Q A 1 but v Q A 2 .
T Q ¯ A 1 Q ¯ A 2 ( v ) = T Q ¯ A 1 ( v ) , T Q ̲ A 1 Q ̲ A 2 ( v ) = T Q ̲ A 1 ( v ) , I Q ¯ A 1 Q ¯ A 2 ( v ) = I Q ¯ A 1 ( v ) , I Q ̲ A 1 Q ̲ A 2 ( v ) = I Q ̲ A 1 ( v ) , F Q ¯ A 1 Q ¯ A 2 ( v ) = F Q ¯ A 1 ( v ) , F Q ̲ A 1 Q ̲ A 2 ( v ) = F Q ̲ A 1 ( v ) .
(ii) 
v Q A 1 but v Q A 2 .
T Q ¯ A 1 Q ¯ A 2 ( v ) = T Q ¯ A 2 ( v ) , T Q ̲ A 1 Q ̲ A 2 ( v ) = T Q ̲ A 2 ( v ) , I Q ¯ A 1 Q ¯ A 2 ( v ) = I Q ¯ A 2 ( v ) , I Q ̲ A 1 Q ̲ A 2 ( v ) = I Q ̲ A 2 ( v ) , F Q ¯ A 1 Q ¯ A 2 ( v ) = F Q ¯ A 2 ( v ) , F Q ̲ A 1 Q ̲ A 2 ( v ) = F Q ̲ A 2 ( v ) .
(iii) 
v Q A 1 Q ̲ A 2
T Q ¯ A 1 Q ¯ A 2 ( v ) = max { T Q ¯ A 1 ( v ) , T Q ¯ A 2 ( v ) } , T Q ̲ A 1 Q ̲ A 2 ( v ) = max { T Q ̲ A 1 ( v ) , T Q ̲ A 2 ( v ) } , I Q ¯ A 1 Q ¯ A 2 ( v ) = min { I Q ¯ A 1 ( v ) , I Q ¯ A 2 ( v ) } , I Q ̲ A 1 Q ̲ A 2 ( v ) = min { I Q ̲ A 1 ( v ) , I Q ̲ A 2 ( v ) } , F Q ¯ A 1 Q ¯ A 2 ( v ) = min { F Q ¯ A 1 ( v ) , F Q ¯ A 2 ( v ) } , F Q ̲ A 1 Q ̲ A 2 ( v ) = min { F Q ̲ A 1 ( v ) , F Q ̲ A 2 ( v ) } .
(iv) 
v u S B 1 but v u S B 2 .
T S ¯ B 1 S ¯ B 2 ( v u ) = T S ¯ B 1 ( v u ) , T S ̲ B 1 S ̲ B 2 ( v u ) = T S ̲ B 1 ( v u ) , I S ¯ B 1 S ¯ B 2 ( v u ) = I S ¯ B 1 ( v u ) , I S ̲ B 1 S ̲ B 2 ( v u ) = I S ̲ B 1 ( v u ) , F S ¯ B 1 S ¯ B 2 ( v u ) = F S ¯ B 1 ( v u ) , F S ̲ B 1 S ̲ B 2 ( v u ) = F S ̲ B 1 ( v u ) .
(v) 
v u S B 1 but v u S B 2
T S ¯ B 1 S ¯ B 2 ( v u ) = T S ¯ B 2 ( v u ) , T S ̲ B 1 S ̲ B 2 ( v u ) = T S ̲ B 2 ( v u ) , I S ¯ B 1 S ¯ B 2 ( v u ) = I S ¯ B 2 ( v u ) , I S ̲ B 1 S ̲ B 2 ( v u ) = I S ̲ B 2 ( v u ) , F S ¯ B 1 S ¯ B 2 ( v u ) = F S ¯ B 2 ( v u ) , F S ̲ B 1 S ̲ B 2 ( v u ) = F S ̲ B 2 ( v u ) .
(vi) 
v u S B 1 S ̲ B 2
T S ¯ B 1 S ¯ B 2 ( v u ) = max { T S ¯ B 1 ( v u ) , T S ¯ B 2 ( v u ) } , T S ̲ B 1 S ̲ B 2 ( v u ) = max { T S ̲ B 1 ( v u ) , T S ̲ B 2 ( v u ) } , I S ¯ B 1 S ¯ B 2 ( v u ) = min { I S ¯ B 1 ( v u ) , I S ¯ B 2 ( v u ) } , I S ̲ B 1 S ̲ B 2 ( v u ) = min { I S ̲ B 1 ( v u ) , I S ̲ B 2 ( v u ) } , F S ¯ B 1 S ¯ B 2 ( v u ) = min { F S ¯ B 1 ( v u ) , F S ¯ B 2 ( v u ) } , F S ̲ B 1 S ̲ B 2 ( v u ) = min { F S ̲ B 1 ( v u ) , F S ̲ B 2 ( v u ) } .
Example 5.
Let V = { v 1 , v 2 , v 3 , v 4 } be a set of universes, and M = { e 1 , e 2 , e 3 } a set of parameters. Then, a neutrosophic soft relation over V × M can be written as in Table 7.
Let A 1 = { ( e 1 , 0.5 , 0.7 , 0.8 ) , ( e 2 , 0.7 , 0.5 , 0.3 ) , ( e 3 , 0.4 , 0.5 , 0.3 ) } , and A 2 = { ( e 1 , 0.6 , 0.3 , 0.5 ) , ( e 2 , 0.5 , 0.8 , 0.2 ) , ( e 3 , 0.5 , 0.7 , 0.2 ) } are two neutrosophic sets on M , Then, Q ( A 1 ) = ( Q ̲ ( A 1 ) , Q ¯ ( A 1 ) ) and Q ( A 2 ) = ( Q ̲ ( A 2 ) , Q ¯ ( A 2 ) ) are NSRSs, where
Q ̲ ( A 1 ) = { ( v 1 , 0.5 , 0.6 , 0.5 ) , ( v 2 , 0.5 , 0.5 , 0.7 ) ( v 3 , 0.5 , 0.5 , 0.7 ) , ( v 4 0.4 , 0.5 , 0.5 ) } , Q ¯ ( A 1 ) = { ( v 1 , 0.5 , 0.5 , 0.6 ) , ( v 2 , 0.5 , 0.5 , 0.3 ) , ( v 3 , 0.5 , 0.5 , 0.5 ) , ( v 4 0.5 , 0.5 , 0.3 ) } , Q ̲ ( A 2 ) = { ( v 1 , 0.6 , 0.5 , 0.5 ) , ( v 2 , 0.5 , 0.7 , 0.5 ) , ( v 3 , 0.5 , 0.7 , 0.5 ) , ( v 4 , 0.5 , 0.6 , 0.5 ) } , Q ¯ ( A 2 ) = { ( v 1 , 0.5 , 0.4 , 0.5 ) , ( v 2 , 0.6 , 0.6 , 0.2 ) , ( v 3 , 0.6 , 0.6 , 0.5 ) , ( v 4 , 0.5 , 0.7 , 0.2 ) } .
Let E = { v 1 v 2 , v 1 v 4 , v 2 v 2 , v 2 v 3 , v 3 v 3 , v 3 v 4 } V × V , and L = { e 1 e 2 , e 1 e 3 , e 2 e 3 } M ´ . Then, a neutrosophic soft relation on E can be written as in Table 8.
Let B 1 = { ( e 1 e 2 , 0.5 , 0.4 , 0.5 ) , ( e 1 e 3 , 0.3 , 0.4 , 0.5 ) , ( e 2 e 3 , 0.4 , 0.4 , 0.3 ) } , and B 2 = { ( e 1 e 2 , 0.5 , 0.3 , 0.2 ) , ( e 1 e 3 , 0.4 , 0.3 , 0.3 ) , ( e 2 e 3 , 0.4 , 0.6 , 0.2 ) } are two neutrosophic sets on L, Then, S ( B 1 ) = ( S ̲ ( B 1 ) , S ¯ ( B 1 ) ) and S ( B 2 ) = ( S ̲ ( B 2 ) , S ¯ ( B 2 ) ) are NSRRs, where
S ̲ ( B 1 ) = { ( v 1 v 2 , 0.3 , 0.4 , 0.3 ) , ( v 1 v 4 , 0.3 , 0.4 , 0.4 ) , ( v 2 v 2 , 0.4 , 0.4 , 0.4 ) , ( v 2 v 3 , 0.3 , 0.4 , 0.4 ) , ( v 3 v 3 , 0.3 , 0.4 , 0.5 ) , ( v 3 v 4 , 0.3 , 0.4 , 0.5 ) } , S ¯ ( B 1 ) = { ( v 1 v 2 , 0.3 , 0.4 , 0.5 ) , ( v 1 v 4 , 0.4 , 0.4 , 0.3 ) , ( v 2 v 2 , 0.4 , 0.4 , 0.3 ) , ( v 2 v 3 , 0.4 , 0.4 , 0.3 ) , ( v 3 v 3 , 0.3 , 0.4 , 0.5 ) , ( v 3 v 4 , 0.4 , 0.4 , 0.3 ) } ; S ̲ ( B 2 ) = { ( v 1 v 2 , 0.4 , 0.6 , 0.2 ) , ( v 1 v 4 , 0.4 , 0.6 , 0.3 ) , ( v 2 v 2 , 0.4 , 0.6 , 0.2 ) , ( v 2 v 3 , 0.4 , 0.6 , 0.3 ) , ( v 3 v 3 , 0.4 , 0.6 , 0.3 ) , ( v 3 v 4 , 0.4 , 0.6 , 0.3 ) } , S ¯ ( B 2 ) = { ( v 1 v 2 , 0.3 , 0.3 , 0.2 ) , ( v 1 v 4 , 0.4 , 0.3 , 0.2 ) , ( v 2 v 2 , 0.4 , 0.3 , 0.2 ) , ( v 2 v 3 , 0.4 , 0.3 , 0.2 ) , ( v 3 v 3 , 0.4 , 0.3 , 0.3 ) , ( v 3 v 4 , 0.4 , 0.4 , 0.2 ) } .
Thus, G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) are NSRGs, where G ̲ 1 = ( Q ̲ ( A 1 ) , S ̲ ( B 1 ) ) , G ¯ 1 = ( Q ¯ ( A 1 ) , S ¯ ( B 1 ) ) as shown in Figure 2.
G ̲ 2 = ( Q ̲ ( A 2 ) , S ̲ ( B 2 ) ) , G ¯ 2 = ( Q ¯ ( A 2 ) , S ¯ ( B 2 ) ) as shown in Figure 3.
The union of G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) is NSRG G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) as shown in Figure 4.
Definition 6.
Let G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) be two NSRGs on V. The intersection of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) , where G ̲ 1 G ̲ 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G ¯ 1 G ¯ 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ¯ B 2 ) are neutrosophic graphs, respectively, such that
(i) 
v Q A 1 but v Q A 2 .
T Q ¯ A 1 Q ¯ A 2 ( v ) = T Q ¯ A 1 ( v ) , T Q ̲ A 1 Q ̲ A 2 ( v ) = T Q ̲ A 1 ( v ) , I Q ¯ A 1 Q ¯ A 2 ( v ) = I Q ¯ A 1 ( v ) , I Q ̲ A 1 Q ̲ A 2 ( v ) = I Q ̲ A 1 ( v ) , F Q ¯ A 1 Q ¯ A 2 ( v ) = F Q ¯ A 1 ( v ) , F Q ̲ A 1 Q ̲ A 2 ( v ) = F Q ̲ A 1 ( v ) .
(ii) 
v Q A 1 but v Q A 2 .
T Q ¯ A 1 Q ¯ A 2 ( v ) = T Q ¯ A 2 ( v ) , T Q ̲ A 1 Q ̲ A 2 ( v ) = T Q ̲ A 2 ( v ) , I Q ¯ A 1 Q ¯ A 2 ( v ) = I Q ¯ A 2 ( v ) , I Q ̲ A 1 Q ̲ A 2 ( v ) = I Q ̲ A 2 ( v ) , F Q ¯ A 1 Q ¯ A 2 ( v ) = F Q ¯ A 2 ( v ) , F Q ̲ A 1 Q ̲ A 2 ( v ) = F Q ̲ A 2 ( v ) .
(iii) 
v Q A 1 Q ̲ A 2
T Q ¯ A 1 Q ¯ A 2 ( v ) = min { T Q ¯ A 1 ( v ) , T Q ¯ A 2 ( v ) } , T Q ̲ A 1 Q ̲ A 2 ( v ) = min { T Q ̲ A 1 ( v ) , T Q ̲ A 2 ( v ) } , I Q ¯ A 1 Q ¯ A 2 ( v ) = max { I Q ¯ A 1 ( v ) , I Q ¯ A 2 ( v ) } , I Q ̲ A 1 Q ̲ A 2 ( v ) = max { I Q ̲ A 1 ( v ) , I Q ̲ A 2 ( v ) } , F Q ¯ A 1 Q ¯ A 2 ( v ) = max { F Q ¯ A 1 ( v ) , F Q ¯ A 2 ( v ) } , F Q ̲ A 1 Q ̲ A 2 ( v ) = max { F Q ̲ A 1 ( v ) , F Q ̲ A 2 ( v ) } .
(iv) 
v u S B 1 but v u S B 2 .
T S ¯ B 1 S ¯ B 2 ( v u ) = T S ¯ B 1 ( v u ) , T S ̲ B 1 S ̲ B 2 ( v u ) = T S ̲ B 1 ( v u ) , I S ¯ B 1 S ¯ B 2 ( v u ) = I S ¯ B 1 ( v u ) , I S ̲ B 1 S ̲ B 2 ( v u ) = I S ̲ B 1 ( v u ) , F S ¯ B 1 S ¯ B 2 ( v u ) = F S ¯ B 1 ( v u ) , F S ̲ B 1 S ̲ B 2 ( v u ) = F S ̲ B 1 ( v u ) .
(v) 
v u S B 1 but v u S B 2
T S ¯ B 1 S ¯ B 2 ( v u ) = T S ¯ B 2 ( v u ) , T S ̲ B 1 S ̲ B 2 ( v u ) = T S ̲ B 2 ( v u ) , I S ¯ B 1 S ¯ B 2 ( v u ) = I S ¯ B 2 ( v u ) , I S ̲ B 1 S ̲ B 2 ( v u ) = I S ̲ B 2 ( v u ) , F S ¯ B 1 S ¯ B 2 ( v u ) = F S ¯ B 2 ( v u ) , F S ̲ B 1 S ̲ B 2 ( v u ) = F S ̲ B 2 ( v u ) .
(vi) 
v u S B 1 S ̲ B 2
T S ¯ B 1 S ¯ B 2 ( v u ) = min { T S ¯ B 1 ( v u ) , T S ¯ B 2 ( v u ) } , T S ̲ B 1 S ̲ B 2 ( v u ) = min { T S ̲ B 1 ( v u ) , T S ̲ B 2 ( v u ) } , I S ¯ B 1 S ¯ B 2 ( v u ) = max { I S ¯ B 1 ( v u ) , I S ¯ B 2 ( v u ) } , I S ̲ B 1 S ̲ B 2 ( v u ) = max { I S ̲ B 1 ( v u ) , I S ̲ B 2 ( v u ) } , F S ¯ B 1 S ¯ B 2 ( v u ) = max { F S ¯ B 1 ( v u ) , F S ¯ B 2 ( v u ) } , F S ̲ B 1 S ̲ B 2 ( v u ) = max { F S ̲ B 1 ( v u ) , F S ̲ B 2 ( v u ) } .
Definition 7.
Let G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) be two neutrosophic soft rough graphs on V. The join of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 + G 2 = ( G ̲ 1 + G ̲ 2 , G ¯ 1 + G ¯ 2 ) , where G ̲ 1 + G ̲ 2 = ( Q ̲ A 1 + Q ̲ A 2 , S ̲ B 1 + S ̲ B 2 ) and G ¯ 1 + G ¯ 2 = ( Q ¯ A 1 + Q ¯ A 2 , S ¯ B 1 + S ¯ B 2 ) are neutrosophic graph, respectively, such that
(i) 
v Q A 1 but v Q A 2 .
T Q ¯ A 1 + Q ¯ A 2 ( v ) = T Q ¯ A 1 ( v ) , T Q ̲ A 1 + Q ̲ A 2 ( v ) = T Q ̲ A 1 ( v ) , I Q ¯ A 1 + Q ¯ A 2 ( v ) = I Q ¯ A 1 ( v ) , I Q ̲ A 1 + Q ̲ A 2 ( v ) = I Q ̲ A 1 ( v ) , F Q ¯ A 1 + Q ¯ A 2 ( v ) = F Q ¯ A 1 ( v ) , F Q ̲ A 1 + Q ̲ A 2 ( v ) = F Q ̲ A 1 ( v ) .
(ii) 
v Q A 1 but v Q A 2 .
T Q ¯ A 1 + Q ¯ A 2 ( v ) = T Q ¯ A 2 ( v ) , T Q ̲ A 1 + Q ̲ A 2 ( v ) = T Q ̲ A 2 ( v ) , I Q ¯ A 1 + Q ¯ A 2 ( v ) = I Q ¯ A 2 ( v ) , I Q ̲ A 1 + Q ̲ A 2 ( v ) = I Q ̲ A 2 ( v ) , F Q ¯ A 1 + Q ¯ A 2 ( v ) = F Q ¯ A 2 ( v ) , F Q ̲ A 1 + Q ̲ A 2 ( v ) = F Q ̲ A 2 ( v ) .
(iii) 
v Q A 1 Q ̲ A 2
T Q ¯ A 1 + Q ¯ A 2 ( v ) = max { T Q ¯ A 1 ( v ) , T Q ¯ A 2 ( v ) } , T Q ̲ A 1 + Q ̲ A 2 ( v ) = max { T Q ̲ A 1 ( v ) , T Q ̲ A 2 ( v ) } , I Q ¯ A 1 + Q ¯ A 2 ( v ) = min { I Q ¯ A 1 ( v ) , I Q ¯ A 2 ( v ) } , I Q ̲ A 1 + Q ̲ A 2 ( v ) = min { I Q ̲ A 1 ( v ) , I Q ̲ A 2 ( v ) } , F Q ¯ A 1 + Q ¯ A 2 ( v ) = min { F Q ¯ A 1 ( v ) , F Q ¯ A 2 ( v ) } , F Q ̲ A 1 + Q ̲ A 2 ( v ) = min { F Q ̲ A 1 ( v ) , F Q ̲ A 2 ( v ) } .
(iv) 
v u S B 1 but v u S B 2 .
T S ¯ B 1 + S ¯ B 2 ( v u ) = T S ¯ B 1 ( v u ) , T S ̲ B 1 + S ̲ B 2 ( v u ) = T S ̲ B 1 ( v u ) , I S ¯ B 1 + S ¯ B 2 ( v u ) = I S ¯ B 1 ( v u ) , I S ̲ B 1 + S ̲ B 2 ( v u ) = I S ̲ B 1 ( v u ) , F S ¯ B 1 + S ¯ B 2 ( v u ) = F S ¯ B 1 ( v u ) , F S ̲ B 1 + S ̲ B 2 ( v u ) = F S ̲ B 1 ( v u ) .
(v) 
v u S B 1 but v u S B 2
T S ¯ B 1 + S ¯ B 2 ( v u ) = T S ¯ B 2 ( v u ) , T S ̲ B 1 + S ̲ B 2 ( v u ) = T S ̲ B 2 ( v u ) , I S ¯ B 1 + S ¯ B 2 ( v u ) = I S ¯ B 2 ( v u ) , I S ̲ B 1 + S ̲ B 2 ( v u ) = I S ̲ B 2 ( v u ) , F S ¯ B 1 + S ¯ B 2 ( v u ) = F S ¯ B 2 ( v u ) , F S ̲ B 1 + S ̲ B 2 ( v u ) = F S ̲ B 2 ( v u ) .
(vi) 
v u S B 1 S ̲ B 2
T S ¯ B 1 + S ¯ B 2 ( v u ) = max { T S ¯ B 1 ( v u ) , T S ¯ B 2 ( v u ) } , T S ̲ B 1 + S ̲ B 2 ( v u ) = max { T S ̲ B 1 ( v u ) , T S ̲ B 2 ( v u ) } , I S ¯ B 1 + S ¯ B 2 ( v u ) = min { I S ¯ B 1 ( v u ) , I S ¯ B 2 ( v u ) } , I S ̲ B 1 + S ̲ B 2 ( v u ) = min { I S ̲ B 1 ( v u ) , I S ̲ B 2 ( v u ) } , F S ¯ B 1 + S ¯ B 2 ( v u ) = min { F S ¯ B 1 ( v u ) , F S ¯ B 2 ( v u ) } , F S ̲ B 1 + S ̲ B 2 ( v u ) = min { F S ̲ B 1 ( v u ) , F S ̲ B 2 ( v u ) } .
(vii) 
v u E ˜ , where E ˜ is the set of edges joining vertices of Q A 1 and Q A 2 .
T S ¯ B 1 + S ¯ B 2 ( v u ) = min { T Q ¯ A 1 ( v ) , T Q ¯ A 2 ( u ) } , T S ̲ B 1 + S ̲ B 2 ( v u ) = min { T Q ̲ A 1 ( v ) , T Q ̲ A 2 ( u ) } , I S ¯ B 1 + S ¯ B 2 ( v u ) = max { I Q ¯ A 1 ( v ) , I Q ¯ A 2 ( u ) } , I S ̲ B 1 + S ̲ B 2 ( v u ) = max { I Q ̲ A 1 ( v ) , I Q ̲ A 2 ( u ) } , F S ¯ B 1 + S ¯ B 2 ( v u ) = max { F Q ¯ A 1 ( v ) , F Q ¯ A 2 ( u ) } , F S ̲ B 1 + S ̲ B 2 ( v u ) = max { F Q ̲ A 1 ( v ) , F Q ̲ A 2 ( u ) } .
Definition 8.
The Cartesian product of G 1 and G 2 is a G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) , where G ̲ 1 G ̲ 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G ¯ 1 G ¯ 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ¯ B 2 ) are neutrosophic digraph, such that
(i) 
( v 1 , v 2 ) Q A 1 × Q A 2 .
T ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 2 ( v 1 ) } , T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 2 ( v 1 ) } , I ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 2 ( v 1 ) } , I ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 2 ( v 1 ) } , F ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 2 ( v 1 ) } , F ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 2 ( v 1 ) } .
(ii) 
v 1 v 2 S B 2 , v Q A 1 .
T ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ¯ A 1 ( v ) , T S ¯ B 2 ( v 1 v 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ̲ A 1 ( v ) , T S ̲ B 2 ( v 1 v 2 ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ¯ A 1 ( v ) , I S ¯ B 2 ( v 1 v 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ̲ A 1 ( v ) , I S ̲ B 2 ( v 1 v 2 ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ¯ A 1 ( v ) , F S ¯ B 2 ( v 1 v 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ̲ A 1 ( v ) , F S ̲ B 2 ( v 1 v 2 ) } .
(iii) 
v 1 v 2 S B 1 , v Q A 2 .
T ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = min { T S ̲ B 1 ( v 1 v 2 ) , T Q ̲ A 2 ( v ) } , T ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = min { T S ¯ B 1 ( v 1 v 2 ) , T Q ¯ A 2 ( v ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { I S ¯ B 1 ( v 1 v 2 ) , I Q ¯ A 2 ( v ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { I S ̲ B 1 ( v 1 v 2 ) , I Q ̲ A 2 ( v ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { F S ¯ B 1 ( v 1 v 2 ) , F Q ¯ A 2 ( v ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { F S ̲ B 1 ( v 1 v 2 ) , F Q ̲ A 2 ( v ) } .
Definition 9.
The cross product of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) , where G ̲ 1 G ̲ 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G ¯ 1 G ¯ 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ¯ B 2 ) are neutrosophic graphs, respectively, such that
(i) 
( v 1 , v 2 ) Q A 1 × Q A 2 .
T ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 2 ( v 1 ) } , T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 2 ( v 1 ) } , I ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 2 ( v 1 ) } , I ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 2 ( v 1 ) } , F ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 2 ( v 1 ) } , F ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 2 ( v 1 ) } .
(ii) 
v 1 u 1 S B 1 , v 2 u 2 S B 2 .
T ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = min { T S ¯ B 1 ( v 1 u 1 ) , T S ¯ B 2 ( v 1 u 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = min { T S ̲ B 1 ( v 1 u 1 ) , T S ̲ B 2 ( v 1 u 2 ) } , I ( S ¯ B 1 S ¯ B 2 ( v 1 , v 2 ) ( u 1 , u 2 ) = max { I S ¯ B 1 ( v 1 u 1 ) , I S ¯ B 2 ( v 1 u 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { I S ̲ B 1 ( v 1 u 1 ) , I S ̲ B 2 ( v 1 u 2 ) } , F ( S ¯ B 1 S ¯ B 2 ( v 1 , v 2 ) ( u 1 , u 2 ) = max { F S ¯ B 1 ( v 1 u 1 ) , F S ¯ B 2 ( v 1 u 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { F S ̲ B 1 ( v 1 u 1 ) , F S ̲ B 2 ( v 1 u 2 ) } .
Definition 10.
The rejection of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 | G 2 = ( G ̲ 1 | G ̲ 2 , G ¯ 1 | G ¯ 2 ) , where G ̲ 1 | G ̲ 2 = ( S ̲ A 1 | S ̲ A 2 , S ̲ B 1 | S ̲ B 2 ) and G ¯ 1 | G ¯ 2 = ( S ¯ A 1 | S ¯ A 2 , S ¯ B 1 | S ¯ B 2 ) are neutrosophic graphs such that
(i) 
( v 1 , v 2 ) Q A 1 × Q A 2 .
T ( Q ¯ A 1 | Q ¯ A 2 ) ( v 1 , v 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 2 ( v 2 ) } , T ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , v 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 2 ( v 2 ) } , I ( Q ¯ A 1 | Q ¯ A 2 ) ( v 1 , v 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 2 ( v 2 ) } , I ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , v 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 2 ( v 2 ) } , F ( Q ¯ A 1 | Q ¯ A 2 ) ( v 1 , v 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 2 ( v 2 ) } , F ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , v 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 2 ( v 2 ) } .
(ii) 
v 2 u 2 S B 2 , v Q A 1 .
T ( S ¯ B 1 | S ¯ B 2 ) ( v , v 2 ) ( v , u 2 ) = min { T Q ¯ A 1 ( v ) , T Q ¯ A 2 ( v 2 ) , T Q ¯ A 2 ( u 2 ) } , T ( S ̲ B 1 | Q ̲ B 2 ) ( v , v 2 ) ( v , u 2 ) = min { T Q ̲ A 1 ( v ) , T Q ̲ A 2 ( v 2 ) , T Q ̲ A 2 ( u 2 ) } , ( I S ¯ B 1 | S ¯ B 2 ) ( v , v 2 ) ( v , u 2 ) = max { I Q ¯ A 1 ( v ) , I Q ¯ A 2 ( v 2 ) , I Q ¯ A 2 ( u 2 ) } , ( I S ̲ B 1 | S ̲ B 2 ) ( v , v 2 ) ( v , u 2 ) = max { I Q ̲ A 1 ( v ) , I Q ̲ A 2 ( v 2 ) , I Q ̲ A 2 ( u 2 ) } , ( F S ¯ B 1 | S ¯ B 2 ) ( v , v 2 ) ( v , u 2 ) = max { F Q ¯ A 1 ( v ) , F Q ¯ A 2 ( v 2 ) , F Q ¯ A 2 ( u 2 ) } , ( F S ̲ B 1 | S ̲ B 2 ) ( v , v 2 ) ( v , u 2 ) = max { F Q ̲ A 1 ( v ) , F Q ̲ A 2 ( v 2 ) , F Q ̲ A 2 ( u 2 ) } .
(iii) 
v 1 u 1 S B 1 , v Q A 2 ,
T ( S ̲ B 1 | S ̲ B 2 ) ( v 1 , v ) ( u 1 , v ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 1 ( u 1 ) , T Q ̲ A 2 ( v ) } , I ( S ̲ B 1 | S ̲ B 2 ) ( v 1 , v ) ( u 1 , v ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 1 ( u 1 ) , I Q ̲ A 2 ( v ) } , F ( S ̲ B 1 | S ̲ B 2 ) ( v 1 , v ) ( u 1 , v ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 1 ( u 1 ) , F Q ̲ A 2 ( v ) } , T ( S ¯ B 1 | S ¯ B 2 ) ( v 1 , v ) ( u 1 , v ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 1 ( u 1 ) , T Q ¯ A 2 ( v ) } , I ( S ¯ B 1 | S ¯ B 2 ) ( v 1 , v ) ( u 1 , v ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 1 ( u 1 ) , I Q ¯ A 2 ( v ) } , F ( S ¯ B 1 | S ¯ B 2 ) ( v 1 , v ) ( u 1 , v ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 1 ( u 1 ) , F Q ¯ A 2 ( v ) } .
(iv) 
v 1 u 1 S ¯ B 1 , v 2 u 2 S ¯ B 2 , v 1 = u 1 .
T ( S ̲ B 1 | S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 1 ( u 1 ) , T Q ̲ A 2 ( v 2 ) , T Q ̲ A 2 ( u 2 ) } , I ( S ̲ B 1 | S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 1 ( u 1 ) , I Q ̲ A 2 ( v 2 ) , I Q ̲ A 2 ( u 2 ) } , F ( S ̲ B 1 | S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 1 ( u 1 ) , F Q ̲ A 2 ( v 2 ) , F Q ̲ A 2 ( u 2 ) } , T ( S ¯ B 1 | S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 1 ( u 1 ) , T Q ¯ A 2 ( v 2 ) , T Q ¯ A 2 ( u 2 ) } , I ( S ¯ B 1 | S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 1 ( u 1 ) , I Q ¯ A 2 ( v 2 ) , I Q ¯ A 2 ( u 2 ) } , F ( S ¯ B 1 | S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 1 ( u 1 ) , F Q ¯ A 2 ( v 2 ) , F Q ¯ A 2 ( u 2 ) } ,
Example 6.
Let G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) be two neutrosophic soft rough graphs on V, where G ̲ 1 = ( Q ̲ A 1 , S ̲ B 1 ) and G ¯ 1 = ( Q ¯ A 1 , S ¯ B 1 ) are neutrosophic graphs as shown in Figure 2 and G ̲ 2 = ( Q ̲ A 2 , S ̲ B 2 ) and G ¯ 2 = ( Q ¯ A 2 , S ¯ B 2 ) are neutrosophic graphs as shown in Figure 3. The Cartesian product of G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) is NSRG G = G 1 × G 2 = ( G ̲ 1 × G ̲ 2 , G ¯ 1 × G ¯ 2 ) as shown in Figure 5.
Definition 11.
The symmetric difference of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) , where G ̲ 1 G ̲ 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G ¯ 1 G ¯ 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ¯ B 2 ) are neutrosophic graphs, respectively, such that
(i) 
( v 1 , v 2 ) Q A 1 × Q A 2 .
T ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 2 ( v 2 ) } , T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 2 ( v 2 ) } , I ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 2 ( v 2 ) } , I ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 2 ( v 2 ) } , F ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 2 ( v 2 ) } , F ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 2 ( v 2 ) } .
(ii) 
v 1 v 2 S B 2 , v Q A 1 .
T ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ¯ A 1 ( v ) , T S ¯ B 2 ( v 1 v 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ̲ A 1 ( v ) , T S ̲ B 2 ( v 1 v 2 ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ¯ A 1 ( v ) , I S ¯ B 2 ( v 1 v 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ̲ A 1 ( v ) , I S ̲ B 2 ( v 1 v 2 ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ¯ A 1 ( v ) , F S ¯ B 2 ( v 1 v 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ̲ A 1 ( v ) , F S ̲ B 2 ( v 1 v 2 ) } .
(iii) 
v 1 v 2 S B 1 , v Q A 2 .
T ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = min { T S ¯ B 1 ( v 1 v 2 ) , T Q ¯ A 2 ( v ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = min { T S ̲ B 1 ( v 1 v 2 ) , T Q ̲ A 2 ( v ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { I S ¯ B 1 ( v 1 v 2 ) , I Q ¯ A 2 ( v ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { I S ̲ B 1 ( v 1 v 2 ) , I Q ̲ A 2 ( v ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { F S ¯ B 1 ( v 1 v 2 ) , F Q ¯ A 2 ( v ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { F S ̲ B 1 ( v 1 v 2 ) , F Q ̲ A 2 ( v ) } .
(iv) 
v 1 u 1 S B 1 , v 2 u 2 S B 2 .
T ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = min { T S ¯ B 1 ( v 1 u 1 ) , T Q ¯ A 2 ( v 2 ) , T Q ¯ A 2 ( u 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = min { T S ̲ B 1 ( v 1 u 1 ) , T Q ̲ A 2 ( v 2 ) , T Q ̲ A 2 ( u 2 ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { I S ¯ B 1 ( v 1 u 1 ) , I Q ¯ A 2 ( v 2 ) , I Q ¯ A 2 ( u 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { I S ̲ B 1 ( v 1 u 1 ) , I Q ̲ A 2 ( v 2 ) , I Q ̲ A 2 ( u 2 ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { F S ¯ B 1 ( v 1 u 1 ) , F Q ¯ A 2 ( v 2 ) , F Q ¯ A 2 ( u 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { F S ̲ B 1 ( v 1 u 1 ) , F Q ̲ A 2 ( v 2 ) , F Q ̲ A 2 ( u 2 ) } .
(v) 
v 1 u 1 S B 1 , v 2 u 2 S B 2 .
T ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 1 ( u 1 ) , T S ¯ B 2 ( v 2 u 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 1 ( u 1 ) , T S ̲ B 2 ( v 2 u 2 ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 1 ( u 1 ) , I S ¯ B 2 ( v 2 u 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 1 ( u 1 ) , I S ̲ B 2 ( v 2 u 2 ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 1 ( u 1 ) , F S ¯ B 2 ( v 2 u 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 2 ) ( u 1 , u 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 1 ( u 1 ) , F S ̲ B 2 ( v 2 u 2 ) } .
Example 7.
Let G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) be two neutrosophic soft rough graphs on V, where G ̲ 1 = ( Q ̲ A 1 , S ̲ B 1 ) and G ¯ 1 = ( Q ¯ A 1 , S ¯ B 1 ) are neutrosophic graphs as shown in Figure 6 and G ̲ 2 = ( Q ̲ A 2 , S ̲ B 2 ) and G ¯ 2 = ( Q ¯ A 2 , S ¯ B 2 ) are neutrosophic graphs as shown in Figure 7.
The symmetric difference of G 1 and G 2 is G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) , where G ̲ 1 G ̲ 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G ¯ 1 G ¯ 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ¯ B 2 ) are neutrosophic graphs as shown in Figure 8.
Definition 12.
The lexicographic product of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 G 2 = ( G 1 G 2 , G 1 G 2 ) , where G 1 G 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G 1 G 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ¯ B 2 ) are neutrosophic graphs, respectively, such that
(i) 
( v 1 , v 2 ) Q A 1 × Q A 2 .
T ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 2 ( v 2 ) } , T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 2 ( v 2 ) } , I ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 2 ( v 2 ) } , I ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 2 ( v 2 ) } , F ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 2 ( v 2 ) } , F ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 2 ( v 2 ) } .
(ii) 
v 1 v 2 S B 2 , v Q A 1 .
T ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ¯ A 1 ( v ) , T S ¯ B 2 ( v 1 v 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ̲ A 1 ( v ) , T S ̲ B 2 ( v 1 v 2 ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ¯ A 1 ( v ) , I S ¯ B 2 ( v 1 v 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ̲ A 1 ( v ) , I S ̲ B 2 ( v 1 v 2 ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ¯ A 1 ( v ) , F S ¯ B 2 ( v 1 v 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ̲ A 1 ( v ) , F S ̲ B 2 ( v 1 v 2 ) } .
(iii) 
v 1 u 1 S B 1 , v 1 u 2 S B 2 .
T ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = min { T S ¯ B 1 ( v 1 u 1 ) , T S ¯ B 2 ( v 1 u 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = min { T S ̲ B 1 ( v 1 u 1 ) , T S ̲ B 2 ( v 1 u 2 ) } , I ( S ¯ B 1 S ¯ B 2 ( v 1 , v 1 ) ( u 1 , u 2 ) = max { I S ¯ B 1 ( v 1 u 1 ) , I S ¯ B 2 ( v 1 u 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = max { I S ̲ B 1 ( v 1 u 1 ) , I S ̲ B 2 ( v 1 u 2 ) } , F ( S ¯ B 1 S ¯ B 2 ( v 1 , v 1 ) ( u 1 , u 2 ) = max { F S ¯ B 1 ( v 1 u 1 ) , F S ¯ B 2 ( v 1 u 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = max { F S ̲ B 1 ( v 1 u 1 ) , F S ̲ B 2 ( v 1 u 2 ) } .
Definition 13.
The strong product of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 G 2 = ( G 1 G 2 , G 1 G 2 ) , where G 1 G 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G 1 G 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ¯ B 2 ) are neutrosophic graphs, respectively, such that
(i) 
( v 1 , v 2 ) Q A 1 × Q A 2 .
T ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 2 ( v 2 ) } , T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 2 ( v 2 ) } , I ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 2 ( v 2 ) } , I ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 2 ( v 2 ) } , F ( Q ¯ A 1 Q ¯ A 2 ) ( v 1 , v 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 2 ( v 2 ) } , F ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 2 ( v 2 ) } .
(ii) 
v 1 v 2 S B 2 , v Q A 1 .
T ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ¯ A 1 ( v ) , T S ¯ B 2 ( v 1 v 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ̲ A 1 ( v ) , T S ̲ B 2 ( v 1 v 2 ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ¯ A 1 ( v ) , I S ¯ B 2 ( v 1 v 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ̲ A 1 ( v ) , I S ̲ B 2 ( v 1 v 2 ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ¯ A 1 ( v ) , F S ¯ B 2 ( v 1 v 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ̲ A 1 ( v ) , F S ̲ B 2 ( v 1 v 2 ) } .
(iii) 
v 1 v 2 S B 1 , v Q A 2 .
T ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = min { T S ¯ B 1 ( v 1 v 2 ) , T Q ¯ A 2 ( v ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = min { T S ̲ B 1 ( v 1 v 2 ) , T Q ̲ A 2 ( v ) } , I ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { I S ¯ B 1 ( v 1 v 2 ) , I Q ¯ A 2 ( v ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { I S ̲ B 1 ( v 1 v 2 ) , I Q ̲ A 2 ( v ) } , F ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { F S ¯ B 1 ( v 1 v 2 ) , F Q ¯ A 2 ( v ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { F S ̲ B 1 ( v 1 v 2 ) , F Q ̲ A 2 ( v ) } .
(iv) 
v 1 u 1 S B 1 , v 1 u 2 S B 2 .
T ( S ¯ B 1 S ¯ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = min { T S ¯ B 1 ( v 1 u 1 ) , T S ¯ B 2 ( v 1 u 2 ) } , T ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = min { T S ̲ B 1 ( v 1 u 1 ) , T S ̲ B 2 ( v 1 u 2 ) } , I ( S ¯ B 1 S ¯ B 2 ( v 1 , v 1 ) ( u 1 , u 2 ) = max { I S ¯ B 1 ( v 1 u 1 ) , I S ¯ B 2 ( v 1 u 2 ) } , I ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = max { I S ̲ B 1 ( v 1 u 1 ) , I S ̲ B 2 ( v 1 u 2 ) } , F ( S ¯ B 1 S ¯ B 2 ( v 1 , v 1 ) ( u 1 , u 2 ) = max { F S ¯ B 1 ( v 1 u 1 ) , F S ¯ B 2 ( v 1 u 2 ) } , F ( S ̲ B 1 S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = max { F S ̲ B 1 ( v 1 u 1 ) , F S ̲ B 2 ( v 1 u 2 ) } .
Definition 14.
The composition of G 1 and G 2 is a neutrosophic soft rough graph G = G 1 [ G 2 ] = ( G 1 [ G 2 ] , G 1 [ G 2 ] ) , where G 1 [ G 2 ] = ( Q ̲ A 1 [ Q ̲ A 2 ] , S ̲ B 1 [ S ̲ B 2 ] ) ] and G 1 [ G 2 ] = ( Q ¯ A 1 [ Q ¯ A 2 ] , S ¯ B 1 [ S ¯ B 2 ] ) are neutrosophic graphs, respectively, such that
(i) 
( v 1 , v 2 ) Q A 1 × Q A 2 .
T ( Q ¯ A 1 × Q ¯ A 2 ) ( v 1 , v 2 ) = min { T Q ¯ A 1 ( v 1 ) , T Q ¯ A 2 ( v 2 ) } , T ( Q ̲ A 1 × Q ̲ A 2 ) ( v 1 , v 2 ) = min { T Q ̲ A 1 ( v 1 ) , T Q ̲ A 2 ( v 2 ) } , I ( Q ¯ A 1 × Q ¯ A 2 ) ( v 1 , v 2 ) = max { I Q ¯ A 1 ( v 1 ) , I Q ¯ A 2 ( v 2 ) } , I ( Q ̲ A 1 × Q ̲ A 2 ) ( v 1 , v 2 ) = max { I Q ̲ A 1 ( v 1 ) , I Q ̲ A 2 ( v 2 ) } , F ( Q ¯ A 1 × Q ¯ A 2 ) ( v 1 , v 2 ) = max { F Q ¯ A 1 ( v 1 ) , F Q ¯ A 2 ( v 2 ) } , F ( Q ̲ A 1 × Q ̲ A 2 ) ( v 1 , v 2 ) = max { F Q ̲ A 1 ( v 1 ) , F Q ̲ A 2 ( v 2 ) } .
(ii) 
v 1 v 2 S B 2 , v Q A 1 .
T ( S ¯ B 1 × S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ¯ A 1 ( v ) , T S ¯ B 2 ( v 1 v 2 ) } , T ( S ̲ B 1 × S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = min { T Q ̲ A 1 ( v ) , T S ̲ B 2 ( v 1 v 2 ) } , I ( S ¯ B 1 × S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ¯ A 1 ( v ) , I S ¯ B 2 ( v 1 v 2 ) } , I ( S ̲ B 1 × S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { I Q ̲ A 1 ( v ) , I S ̲ B 2 ( v 1 v 2 ) } , F ( S ¯ B 1 × S ¯ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ¯ A 1 ( v ) , F S ¯ B 2 ( v 1 v 2 ) } , F ( S ̲ B 1 × S ̲ B 2 ) ( v , v 1 ) ( v , v 2 ) = max { F Q ̲ A 1 ( v ) , F S ̲ B 2 ( v 1 v 2 ) } .
(iii) 
v 1 v 2 S B 1 , v Q A 2 .
T ( S ¯ B 1 × S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = min { T S ¯ B 1 ( v 1 v 2 ) , T Q ¯ A 2 ( v ) } , T ( S ̲ B 1 × S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = min { T S ̲ B 1 ( v 1 v 2 ) , T Q ̲ A 2 ( v ) } , I ( S ¯ B 1 × S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { I S ¯ B 1 ( v 1 v 2 ) , I Q ¯ A 2 ( v ) } , I ( S ̲ B 1 × S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { I S ̲ B 1 ( v 1 v 2 ) , I Q ̲ A 2 ( v ) } , F ( S ¯ B 1 × S ¯ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { F S ¯ B 1 ( v 1 v 2 ) , F Q ¯ A 2 ( v ) } , F ( S ̲ B 1 × S ̲ B 2 ) ( v 1 , v ) ( v 2 , v ) = max { F S ̲ B 1 ( v 1 v 2 ) , F Q ̲ A 2 ( v ) } .
(iv) 
v 1 u 1 S B 1 , v 1 u 2 Q A 2 .
T ( S ¯ B 1 × S ¯ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = min { T S ¯ B 1 ( v 1 u 1 ) , T S ¯ B 2 ( v 1 u 2 ) } , T ( S ̲ B 1 × S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = min { T S ̲ B 1 ( v 1 u 1 ) , T S ̲ B 2 ( v 1 u 2 ) } , I ( S ¯ B 1 × S ¯ B 2 ( v 1 , v 1 ) ( u 1 , u 2 ) = max { I S ¯ B 1 ( v 1 u 1 ) , I S ¯ B 2 ( v 1 u 2 ) } , I ( S ̲ B 1 × S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = max { I S ̲ B 1 ( v 1 u 1 ) , I S ̲ B 2 ( v 1 u 2 ) } , F ( S ¯ B 1 × S ¯ B 2 ( v 1 , v 1 ) ( u 1 , u 2 ) = max { F S ¯ B 1 ( v 1 u 1 ) , F S ¯ B 2 ( v 1 u 2 ) } , F ( S ̲ B 1 × S ̲ B 2 ) ( v 1 , v 1 ) ( u 1 , u 2 ) = max { F S ̲ B 1 ( v 1 u 1 ) , F S ̲ B 2 ( v 1 u 2 ) } .
Definition 15.
Let G = ( G ̲ , G ¯ ) be a neutrosophic soft rough graph. The complement of G, denoted by G ̲ ´ = ( G ̲ ´ , G ¯ ´ ) is a neutrosophic soft rough graph, where G ̲ ´ = ( Q ̲ A ´ , S ̲ B ´ ) and G ¯ ´ = ( Q ¯ A ´ , S ¯ B ´ ) are neutrosophic graphs such that
(i) 
v Q A .
T Q ¯ A ´ ( v ) = T Q ¯ A ( v ) , I Q ¯ A ´ ( v ) = I Q ¯ A ( v ) , F Q ¯ A ´ ( v ) = F Q ¯ A ( v ) , T Q ̲ A ´ ( v ) = T Q ̲ A ( v ) , I Q ̲ A ´ ( v ) = I Q ̲ A ( v ) , F Q ̲ A ´ ( v ) = F Q ̲ A ( v ) .
(ii) 
v , u Q A .
T S ¯ B ´ ( v u ) = min { T Q ¯ A ( v ) , T Q ¯ A ( u ) } T S ¯ B ( v u ) , I S ¯ B ´ ( v u ) = max { I Q ¯ A ( v ) , I Q ¯ A ( u ) } I S ¯ B ( v u ) , F S ¯ B ´ ( v u ) = max { F Q ¯ A ( v ) , F Q ¯ A ( u ) } F S ¯ B ( v u ) , T S ̲ B ´ ( v u ) = min { T Q ̲ A ( v ) , T Q ̲ A ( u ) } T S ̲ B ( v u ) , I S ̲ B ´ ( v u ) = max { I Q ̲ A ( v ) , I Q ̲ A ( u ) } I S ¯ B ( v u ) , F S ̲ B ´ ( v u ) = max { F Q ̲ A ( v ) , F Q ̲ A ( u ) } F S ̲ B ( v u ) .
Example 8.
Consider an NSRGs G as shown in Figure 9.
The complement of G is G ´ = ( G ̲ ´ , G ¯ ´ ) is obtained by using the Definition 15, where G ̲ ´ = ( Q ̲ A ´ , S ̲ B ´ ) and G ¯ ´ = ( Q ¯ A ´ , S ¯ B ´ ) are neutrosophic graphs as shown in Figure 10.
Definition 16.
A graph G is called self complement, if G = G ´ , i.e.,
(i) 
v Q A .
T Q ¯ A ´ ( v ) = T Q ¯ A ( v ) , I Q ¯ A ´ ( v ) = I Q ¯ A ( v ) , F Q ¯ A ´ ( v ) = F Q ¯ A ( v ) , T Q ̲ A ´ ( v ) = T Q ̲ A ( v ) , I Q ̲ A ´ ( v ) = I Q ̲ A ( v ) , F Q ̲ A ´ ( v ) = F Q ̲ A ( v ) .
(ii) 
v , u Q A .
T S ¯ B ´ ( v u ) = T S ¯ B ( v u ) , I S ¯ B ´ ( v u ) = I S ¯ B ( v u ) , F S ¯ B ´ ( v u ) = F S ¯ B ( v u ) , T S ̲ B ´ ( v u ) = T S ̲ B ( v u ) , I S ̲ B ´ ( v u ) = I S ̲ B ( v u ) , F S ̲ B ´ ( v u ) = F S ̲ B ( v u ) .
Definition 17.
A neutrosophic soft rough graph G is called strong neutrosophic soft rough graph if u v S B ,
T S ¯ B ( v u ) = min { T Q ¯ A ( v ) , T Q ¯ A ( u ) } , I S ¯ B ( v u ) = max { I Q ¯ A ( v ) , I Q ¯ A ( u ) } ) , F S ¯ B ( v u ) = max { F Q ¯ A ( v ) , F Q ¯ A ( u ) } , T S ̲ B ( v u ) = min { T Q ̲ A ( v ) , T Q ̲ A ( u ) } , I S ̲ B ( v u ) = max { I Q ̲ A ( v ) , I Q ̲ A ( u ) } , F S ̲ B ( v u ) = max { F Q ̲ A ( v ) , F Q ̲ A ( u ) } .
Example 9.
Consider a graph G such that V = { u , v , w } and E = { u v , v w , w u } as shown in Figure 11. Let Q A be a neutrosophic soft rough set of V and let S B be a neutrosophic soft rough set of E defined in the Table 9 and Table 10, respectively.
Hence, G = ( Q A , S B ) is a strong neutrosophic soft rough graph.
Definition 18.
A neutrosophic soft rough graph G is called a complete neutrosophic soft rough graph if v u Q A ,
T S ¯ B ( v u ) = min { T Q ¯ A ( v ) , T Q ¯ A ( u ) } , I S ¯ B ( v u ) = max { I Q ¯ A ( v ) , I Q ¯ A ( u ) } , F S ¯ B ( v u ) = max { F Q ¯ A ( v ) , F Q ¯ A ( u ) } , T S ̲ B ( v u ) = min { T Q ̲ A ( v ) , T Q ̲ A ( u ) } , I S ̲ B ( v u ) = max { I Q ̲ A ( v ) , I Q ̲ A ( u ) } , F S ̲ B ( v u ) = max { F Q ̲ A ( v ) , F Q ̲ A ( u ) } .
Remark 2.
Every complete neutrosophic soft rough graph is a strong neutrosophic soft rough graph. However, the converse is not true.
Definition 19.
A neutrosophic soft rough graph G is isolated, if x , y Q A .
T S ̲ B ( v u ) = 0 , I S ̲ B ( v u ) = 0 , F S ̲ B ( v u ) = 0 , T S ¯ B ( v u ) = 0 , I S ¯ B ( v u ) = 0 , F S ¯ B ( v u ) = 0 .
Theorem 1.
The rejection of two neutrosophic soft rough graphs is a neutrosophic soft rough graph.
Proof. 
Let G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) be two NSRGs. Let G = G 1 | G 2 = ( G ̲ 1 | G ̲ 2 , G ¯ 1 | G ¯ 2 ) be the rejection of G 1 and G 2 , where G ̲ 1 | G ̲ 2 = ( Q ̲ A 1 | Q ̲ A 2 , S ̲ B 1 | S ̲ B 2 ) and G ¯ 1 | G ¯ 2 = ( Q ¯ A 1 | Q ¯ A 2 , S ¯ B 1 | S ̲ B 2 ) . We claim that G = G 1 | G 2 is a neutrosophic soft rough graph. It is enough to show that S ̲ B 1 | S ̲ B 2 and S ¯ B 1 | S ¯ B 2 are neutrosophic relations on Q ̲ A 1 | Q ̲ A 2 and Q ¯ A 1 | Q ¯ A 2 , respectively. First, we show that S ̲ B 1 | S ̲ B 2 is a neutrosophic relation on Q ̲ A 1 | Q ̲ A 2 .
If v Q ̲ A 1 , v 1 v 2 S ̲ B 2 , then
T ( S ̲ B 1 | S ̲ B 2 ) ( ( v , v 1 ) ( v , v 2 ) ) = ( T Q ̲ A 1 ( v ) ( T Q ̲ A 2 ( v 2 ) T Q ̲ A 2 ( v 2 ) ) ) = ( T Q ̲ A 1 ( v ) T Q ̲ A 2 ( v 2 ) ) ( T Q ̲ A 1 ( v ) T Q ̲ A 2 ( v 2 ) ) = T ( Q ̲ A 1 | Q ̲ A 2 ) ( v , v 1 ) T ( Q ̲ A 1 | Q ̲ A 2 ) ( v , v 2 ) T ( S ̲ B 1 | S ̲ B 2 ) ( ( v , v 1 ) ( v , v 2 ) ) = T ( Q ̲ A 1 | Q ̲ A 2 ) ( v , v 1 ) T ( Q ̲ A 1 | Q ̲ A 2 ) ( v , v 2 ) Similarly , I ( S ̲ B 1 | S ̲ B 2 ) ( ( v , v 1 ) ( v , v 2 ) ) = I ( Q ̲ A 1 | Q ̲ A 2 ) ( v , v 1 ) I ( Q ̲ A 1 | Q ̲ A 2 ) ( v , v 2 ) F ( S ̲ B 1 | S ̲ B 2 ) ( ( v , v 1 ) ( v , v 2 ) ) = F ( Q ̲ A 1 | Q ̲ A 2 ) ( v , v 1 ) F ( Q ̲ A 1 | Q ̲ A 2 ) ( v , v 2 ) .
If v 1 v 2 S ̲ B 1 , v Q ̲ A 2 , then
T ( S ̲ B 1 | S ̲ B 2 ) ( ( v 1 , v ) ( v 2 , v ) ) = ( ( T Q ̲ A 1 ( v 1 ) T Q ̲ A 1 ( v 2 ) ) T Q ̲ A 2 ( v ) ) = ( ( T Q ̲ A 1 ( v 1 ) T Q ̲ A 2 ( v ) ) ( T Q ̲ A 1 ( v 2 ) T Q ̲ A 2 ( v ) ) ) = T ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , v ) T ( Q ̲ A 1 | Q ̲ A 2 ) ( v 2 , v ) T ( S ̲ B 1 | S ̲ B 2 ) ( ( v 1 , v ) ( v 2 , v ) ) = T ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , v ) T ( Q ̲ A 1 | Q ̲ A 2 ) ( v 2 , v ) Similarly , I ( S ̲ B 1 | S ̲ B 2 ) ( ( v 1 , v ) ( v 2 , v ) ) = I ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , v ) I ( Q ̲ A 1 | Q ̲ A 2 ) ( v 2 , v ) F ( S ̲ B 1 | S ̲ B 2 ) ( ( v 1 , v ) ( v 2 , v ) ) = F ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , v ) F ( Q ̲ A 1 | Q ̲ A 2 ) ( v 2 , v ) .
If v 1 v 2 S ̲ B 1 , u 1 , u 2 S ̲ B 2 , then
T ( S ̲ B 1 | S ̲ B 2 ) ( ( v 1 , u 1 ) ( v 2 , u 2 ) ) = ( ( T Q ̲ A 1 ( v 1 ) T Q ̲ A 1 ( v 2 ) ) ( T Q ̲ A 2 ( u 1 ) T Q ̲ A 2 ( u 2 ) ) ) = ( T Q ̲ A 1 ( v 1 ) T Q ̲ A 2 ( u 1 ) ) ( T Q ̲ A 1 ( v 2 ) T Q ̲ A 2 ( u 2 ) ) = T ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , u 1 ) T ( Q ̲ A 1 | Q ̲ A 2 ) ( v 2 , u 2 ) T ( S ̲ B 1 | S ̲ B 2 ) ( ( v 1 , u 1 ) ( v 2 , u 2 ) ) = T ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , u 1 ) T ( Q ̲ A 1 | Q ̲ A 2 ) ( u 1 , u 2 ) Similarly , I ( S ̲ B 1 | S ̲ B 2 ) ( ( v 1 , u 1 ) ( v 2 , u 2 ) ) = I ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , u 1 ) I ( Q ̲ A 1 | Q ̲ A 2 ) ( u 1 , u 2 ) F ( S ̲ B 1 | S ̲ B 2 ) ( ( v 1 , u 1 ) ( v 2 , u 2 ) ) = F ( Q ̲ A 1 | Q ̲ A 2 ) ( v 1 , u 1 ) F ( Q ̲ A 1 | Q ̲ A 2 ) ( u 1 , u 2 ) .
Thus, S ̲ B 1 | S ̲ B 2 is a neutrosophic relation on Q ̲ A 1 | Q ̲ A 2 . Similarly, we can show that S ¯ B 1 | S ¯ B 2 is a neutrosophic relation on Q ¯ A 1 | Q ¯ A 2 . Hence, G is a neutrosophic soft rough graph. ☐
Theorem 2.
The Cartesian product of two NSRGs is a neutrosophic soft rough graph.
Proof. 
Let G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) be two NSRGs. Let G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) be the Cartesian product of G 1 and G 2 , where G ̲ 1 G ̲ 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G ¯ 1 G ¯ 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ̲ B 2 ) . We claim that G = G 1 G 2 is a neutrosophic soft rough graph. It is enough to show that S ̲ B 1 S ̲ B 2 and S ¯ B 1 S ¯ B 2 are neutrosophic relations on Q ̲ A 1 Q ̲ A 2 and Q ¯ A 1 Q ¯ A 2 , respectively. We have to show that S ̲ B 1 S ̲ B 2 is a neutrosophic relation on Q ̲ A 1 Q ̲ A 2 .
If v Q ̲ A 1 , v 1 u 1 S ̲ B 2 , then
T ( S ̲ B 1 S ̲ B 2 ) ( ( v , v 1 ) ( v , u 1 ) ) = T ( Q ̲ A 1 ) ( v ) T ( S ̲ B 2 ) ( v 1 u 1 ) T ( Q ̲ A 1 ) ( v ) ( T ( Q ̲ A 2 ) ( v 1 ) T ( Q ̲ A 2 ) ( u 1 ) ) = ( T ( Q ̲ A 1 ) ( v ) T ( Q ̲ A 2 ) ( v 1 ) ) ( T ( Q ̲ A 1 ) ( v ) T ( Q ̲ A 2 ) ( u 1 ) ) = T ( Q ̲ A 1 Q ̲ A 2 ) ( v , v 1 ) T ( Q ̲ A 1 Q ̲ A 2 ) ( v , u 1 ) T ( S ̲ B 1 S ̲ B 2 ) ( ( v , v 1 ) ( v , u 1 ) ) T ( Q ̲ A 1 Q ̲ A 2 ) ( v , v 1 ) T ( Q ̲ A 1 Q ̲ A 2 ) ( v , u 1 ) Similarly , I ( S ̲ B 1 S ̲ B 2 ) ( ( v , v 1 ) ( v , u 1 ) ) I ( Q ̲ A 1 Q ̲ A 2 ) ( v , v 1 ) I ( Q ̲ A 1 Q ̲ A 2 ) ( v , u 1 ) F ( S ̲ B 1 S ̲ B 2 ) ( ( v , v 1 ) ( v , u 1 ) ) F ( Q ̲ A 1 Q ̲ A 2 ) ( v , v 1 ) F ( Q ̲ A 1 Q ̲ A 2 ) ( v , u 1 ) .
If v 1 u 1 S ̲ B 1 , z Q ̲ A 2 , then
T ( S ̲ B 1 S ̲ B 2 ) ( ( v 1 , z ) ( u 1 , z ) ) = T ( S ̲ B 1 ) ( v 1 u 1 ) T ( Q ̲ A 2 ) ( z ) ( T ( Q ̲ A 1 ) ( v 1 ) ( Q ̲ A 1 ) ( u 1 ) ) T ( Q ̲ A 2 ) ( z ) = T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , z ) T ( Q ̲ A 1 Q ̲ A 2 ) ( u 1 , z ) T ( S ̲ B 1 S ̲ B 2 ) ( ( v 1 , z ) ( u 1 , z ) ) T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , z ) T ( Q ̲ A 1 Q ̲ A 2 ) ( u 1 , z ) Similarly , I ( S ̲ B 1 S ̲ B 2 ) ( ( v 1 , z ) ( u 1 , z ) ) I ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , z ) I ( Q ̲ A 1 Q ̲ A 2 ) ( u 1 , z ) F ( S ̲ B 1 S ̲ B 2 ) ( ( v 1 , z ) ( u 1 , z ) ) F ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , z ) F ( Q ̲ A 1 Q ̲ A 2 ) ( u 1 , z ) .
Therefore, S ̲ B 1 S ̲ B 2 is a neutrosophic relation on Q ̲ A 1 Q ̲ A 2 . Similarly, S ¯ B 1 S ¯ B 2 is a neutrosophic relation on Q ¯ A 1 Q ¯ A 2 . Hence, G is a neutrosophic rough graph. ☐
Theorem 3.
The cross product of two neutrosophic soft rough graphs is a neutrosophic soft rough graph.
Proof. 
Let G 1 = ( G ̲ 1 , G ¯ 1 ) and G 2 = ( G ̲ 2 , G ¯ 2 ) be two NSRGs. Let G = G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) be the cross product of G 1 and G 2 , where G ̲ 1 G ̲ 2 = ( Q ̲ A 1 Q ̲ A 2 , S ̲ B 1 S ̲ B 2 ) and G ¯ 1 G ¯ 2 = ( Q ¯ A 1 Q ¯ A 2 , S ¯ B 1 S ̲ B 2 ) . We claim that G = G 1 G 2 is a neutrosophic soft rough graph. It is enough to show that S ̲ B 1 S ̲ B 2 and S ¯ B 1 S ¯ B 2 are neutrosophic relations on Q ̲ A 1 Q ̲ A 2 and Q ¯ A 1 Q ¯ A 2 , respectively. First, we show that S ̲ B 1 S ̲ B 2 is a neutrosophic relation on Q ̲ A 1 Q ̲ A 2 .
If v 1 u 1 S ̲ B 1 , v 1 u 2 S ̲ B 2 , then
T ( S ̲ B 1 S ̲ B 2 ) ( ( v 1 , v 1 ) ( u 1 , u 2 ) ) = T ( S ̲ B 1 ) ( v 1 u 1 ) T ( S ̲ B 2 ) ( v 1 u 2 ) ( T ( Q ̲ A 1 ) ( v 1 ) T ( Q ̲ A 1 ) ( u 1 ) ( T ( Q ̲ A 2 ) ( v 1 ) T ( Q ̲ A 2 ) ( u 2 ) ) = ( T ( Q ̲ A 1 ) ( v 1 ) T ( Q ̲ A 2 ) ( v 1 ) ) ( T ( Q ̲ A 1 ) ( u 1 ) T ( Q ̲ A 2 ) ( u 2 ) ) = T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 1 ) T ( Q ̲ A 1 Q ̲ A 2 ) ( u 1 , u 2 ) T ( S ̲ B 1 S ̲ B 2 ) ( ( v 1 , v 1 ) ( u 1 , u 2 ) ) T ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 1 ) T ( Q ̲ A 1 Q ̲ A 2 ) ( v , u 2 ) Similarly , I ( S ̲ B 1 S ̲ B 2 ) ( ( v 1 , v 1 ) ( u 1 , u 2 ) ) I ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 1 ) I ( Q ̲ A 1 Q ̲ A 2 ) ( v , u 2 ) F ( S ̲ B 1 S ̲ B 2 ) ( ( v 1 , v 1 ) ( u 1 , u 2 ) ) F ( Q ̲ A 1 Q ̲ A 2 ) ( v 1 , v 1 ) F ( Q ̲ A 1 Q ̲ A 2 ) ( v , u 2 ) .
Thus, S ̲ B 1 S ̲ B 2 is a neutrosophic relation on Q ̲ A 1 Q ̲ A 2 . Similarly, we can show that S ¯ B 1 S ¯ B 2 is a neutrosophic relation on Q ¯ A 1 Q ¯ A 2 . Hence, G is a neutrosophic soft rough graph. ☐

3. Application

In this section, we apply the concept of NSRSs to a decision-making problem. In recent times, the object recognition problem has gained considerable importance. The object recognition problem can be considered as a decision-making problem, in which final identification of objects is founded on a given set of information. A detailed description of the algorithm for the selection of most suitable objects based on an available set of alternatives is given, and purposed decision-making method can be used to calculate lower and upper approximation operators to progress deep concerns of the problem. The presented algorithms can be applied to avoid lengthy calculations when dealing with large number of objects. This method can be applied in various domains for multi-criteria selection of objects.

Selection of Most Suitable Generic Version of Brand Name Medicine

In the pharmaceutical industry, different pharmaceutical companies develop, produce and discover pharmaceutical medicine (drugs) for use as medication. These pharmaceutical companies deals with “brand name medicine” and “generic medicine”. Brand name medicine and generic medicine are bioequivalent, and have a generic medicine rate and element of absorption. Brand name medicine and generic medicine have the same active ingredients, but the inactive ingredients may differ. The most important difference is cost. Generic medicine is less expensive as compared to brand name comparators. Usually, generic drug manufacturers face competition to produce cost less products. The product may possibly be slightly dissimilar in color, shape, or markings. The major difference is cost. We consider a brand name drug “ u = Loratadine ” used for seasonal allergies medication. Consider
V = { u 1 = Triamcinolone , u 2 = Cetirizine / Pseudoephedrine , u 3 = Pseudoephedrine , u 4 = loratadine / pseudoephedrine , u 5 = Fluticasone }
is a set of generic versions of “Loratadine”. We want to select the most suitable generic version of Loratadine on the basis of parameters e 1 = Highly soluble, e 2 = Highly permeable, e 3 = Rapidly dissolving. M = { e 1 , e 2 , e 3 } be a set of paraments. Let Q be a neutrosophic soft relation from V to parameter set M, and describe truth-membership, indeterminacy-membership and false-membership degrees of generic version medicine corresponding to the parameters as shown in Table 11.
Suppose A = { ( e 1 , 0.2 , 0.4 , 0.5 ) , ( e 2 , 0.5 , 0.6 , 0.4 ) , ( e 3 , 0.7 , 0.5 , 0.4 ) } is the most favorable object that is an NS on the parameter set M under consideration. Then, ( Q ̲ ( A ) , Q ¯ ( A ) ) is an NSRS in NSAS ( V , M , Q ) ,  where
Q ¯ ( A ) = { ( u 1 , 0.6 , 0.5 , 0.4 ) , ( u 2 , 0.7 , 0.4 , 0.4 ) , ( u 3 , 0.7 , 0.4 , 0.4 ) , ( u 4 , 0.7 , 0.6 , 0.5 ) , ( u 5 , 0.7 , 0.5 , 0.5 ) } , Q ̲ ( A ) = { ( u 1 , 0.5 , 0.6 , 0.4 ) , ( u 2 , 0.5 , 0.6 , 0.5 ) , ( u 3 , 0.3 , 0.3 , 0.5 ) , ( u 4 , 0.5 , 0.6 , 0.5 ) , ( u 5 , 0.4 , 0.5 , 0.5 ) } .
Let E = { u 1 v 2 , u 1 u 3 , u 4 u 1 , u 2 u 3 , u 5 u 3 , u 2 u 4 , u 2 u 5 } V ´ and L = { e 1 e 3 , e 2 e 1 , e 3 e 2 } M ´ .
Then, a neutrosophic soft relation S on E (from L to E) can be defined as follows in Table 12:
Let B = { ( e 1 e 2 , 0.2 , 0.4 , 0.5 ) , ( e 2 e 3 , 0.5 , 0.4 , 0.4 ) , ( e 1 e 3 , 0.5 , 0.2 , 0.5 ) } be an NS on L that describes some relationship between the parameters under consideration; then, S B = ( S ̲ B , S ¯ B ) is an NSRR, where
S ¯ B = { ( u 1 u 2 , 0.5 , 0.4 , 0.4 ) , ( u 1 u 3 , 0.4 , 0.2 , 0.4 ) , ( u 4 u 1 , 0.4 , 0.2 , 0.4 ) , ( u 2 u 3 , 0.5 , 0.3 , 0.4 ) , ( u 5 u 3 , 0.5 , 0.2 , 0.4 ) , ( u 2 u 4 , 0.4 , 0.3 , 0.4 ) , ( u 2 u 5 , 0.5 , 0.3 , 0.4 ) } , S ̲ B = { ( u 1 u 2 , 0.2 , 0.4 , 0.4 ) ( u 1 u 3 , 0.5 , 0.4 , 0.4 ) , ( u 4 u 1 , 0.5 , 0.4 , 0.4 ) , ( u 2 u 3 , 0.4 , 0.4 , 0.5 ) , ( u 5 u 3 , 0.2 , 0.4 , 0.4 ) , ( u 2 u 4 , 0.2 , 0.4 , 0.4 ) , ( u 2 u 5 , 0.4 , 0.4 , 0.5 ) } .
Thus, G = ( G ̲ , G ¯ ) is an NSRG as shown in Figure 12.
In [3], the sum of two neutrosophic numbers is defined.
Definition 20.
[3] Let C and D be two single valued neutrosophic numbers, and the sum of two single valued neutrosophic number is defined as follows:
C D = < T C + T D T C × T D , I C × I D , F C × F D > .
Algorithm 1: Algorithm for selection of most suitable objects
1.
Input the number of elements in vertex set V = { u 1 , u 2 , , u n } .
2.
Input the number of elements in parameter set M = { e 1 , e 2 , , e m } .
3.
Input a neutrosophic soft relation Q from V to M .
4.
Input a neutrosophic set A on M.
5.
Compute neutrosophic soft rough vertex set Q A = ( Q ̲ A , Q ¯ ( A ) ) .
6.
Input the number of elements in edge set E = { u 1 u 1 , u 1 u 2 , , u k u 1 } .
7.
Input the number of elements in parameter set M ´ = { e 1 e 1 , e 1 e 2 , , e l e 1 } .
8.
Input a neutrosophic soft relation S from V ´ to M ´ .
9.
Input a neutrosophic set B on M ´ .
10.
Compute neutrosophic soft rough edge set S B = ( S ̲ B , S ¯ ( B ) ) .
11.
Compute neutrosophic set α = ( T α ( u i ) , I α ( u i ) , F α ( u i ) ) , where
T α ( u i ) = T Q ¯ ( A ) ( u i ) + T Q ̲ ( A ) ( u i ) T Q ¯ ( A ) ( u i ) × T Q ̲ ( A ) ( u i ) , I α ( u i ) = T Q ¯ ( A ) ( u i ) × T Q ̲ ( A ) ( u i ) , F α ( u i ) = F Q ¯ ( A ) ( u i ) × F Q ̲ ( A ) ( u i ) .
12.
Compute neutrosophic set β = ( T β ( u i u i ) , I β ( u i u j ) , F β ( u i u j ) ) , where
T β ( u i u j ) = T S ¯ ( B ) ( u i u j ) + T S ̲ ( B ) ( u i u j ) T S ¯ ( B ) ( u i u j ) × T S ̲ ( B ) ( u i u j ) , I β ( u i u j ) = T S ¯ ( B ) ( u i u j ) × T S ̲ ( B ) ( u i u j ) , F β ( u i u j ) = F S ¯ ( B ) ( u i u j ) × F S ̲ ( B ) ( u i u j ) .
13.
Calculate the score values of each object u i , and the score function is defined as follows:
S ˜ ( u i ) = u i u j E T α ( u j ) + I α ( u j ) F α ( u j ) 3 ( T β ( u i u j ) + I β ( u i u j ) F β ( u i u j ) ) .
14.
The decision is S i if S i = max i = 1 n S ˜ i .
15.
If i has more than one value, then any one of S i may be chosen.
The sum of UNSRS Q ¯ A and the LNSRS Q ̲ A and sum of LNSRR S ̲ B and the UNSRR S ¯ B are NSs Q ¯ A Q ̲ A and S ¯ B S ̲ B , respectively defined by
α = Q ¯ A Q ̲ A = { ( u 1 , 0.8 , 0.3 , 0.16 ) , ( u 2 , 0.85 , 0.24 , 0.2 ) , ( u 3 , 0.79 , 0.2 , 0.2 ) , ( u 4 , 0.85 , 0.36 , 0.25 ) , ( u 5 , 0.82 , 0.25 , 0.25 ) } , β = S ¯ B S ̲ B = { ( u 1 u 2 , 0.6 , 0.16 , 0.16 ) , ( u 1 u 3 , 0.7 , 0.8 , 0.16 ) , ( u 4 u 1 , 0.7 , 0.8 , 0.16 ) , ( u 2 u 3 , 0.7 , 0.12 , 0.2 ) , ( u 5 u 3 , 0.6 , 0.08 , 0.16 ) , ( u 2 u 4 , 0.52 , 0.12 , 0.16 ) , ( u 2 u 5 , 0.7 , 0.12 , 0.2 ) } .
The score function S ˜ ( u k ) defines for each generic version medicine u i V ,
S ˜ ( u i ) = u i u j E T α ( u j ) + I α ( u j ) F α ( u j ) 3 ( T β ( u i u j ) + I β ( u i u j ) F β ( u i u j ) )
and u k with the larger score value u k = max i S ( u i ) is the most suitable generic version medicine. By calculations, we have
S ˜ ( u 1 ) = 0.88 , S ˜ ( u 2 ) = 0.69 , S ˜ ( u 3 ) = 0.26 S ˜ ( u 4 ) = 0.57 , and S ˜ ( u 5 ) = 0.33 .
Here, u 1 is the optimal decision, and the most suitable generic version of “Loratadine” is “Triamcinolone”. We have used software MATLAB (version 7, MathWorks, Natick, MA, USA) for calculating the required results in the application. The algorithm is given in Algorithm 1. The algorithm of the program is general for any number of objects with respect to certain parameters.

4. Conclusions

Rough set theory can be considered as an extension of classical set theory. Rough set theory is a very useful mathematical model to handle vagueness. NS theory, RS theory and SS theory are three useful distinguished approaches to deal with vagueness. NS and RS models are used to handle uncertainty, and combining these two models with another remarkable model of SSs gives more precise results for decision-making problems. In this paper, we have presented the notion of NSRGs and investigated some properties of NSRGs in detail. The notion of NSRGs can be utilized as a mathematical tool to deal with imprecise and unspecified information. In addition, a decision-making method based on NSRGs is proposed. This research work can be extended to (1) Rough bipolar neutrosophic soft sets; (2) Bipolar neutrosophic soft rough sets, (3) Interval-valued bipolar neutrosophic rough sets, and (4) Soft rough neutrosophic graphs.

Author Contributions

Muhammad Akram and Sundas Shahzadi conceived and designed the experiments; Hafsa M. Malik performed the experiments; Florentin Smarandache analyzed the data; Sundas Shahzadi and Hafsa M. Malik wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Smarandache, F. Neutrosophic set, a generalisation of the Intuitionistic Fuzzy Sets. Int. J. Pure Appl. Math. 2010, 24, 289–297. [Google Scholar]
  2. Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single-valued neutrosophic sets. Multispace Multistructure 2010, 4, 410–413. [Google Scholar]
  3. Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
  4. Molodtsov, D.A. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
  5. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
  6. Maji, P.K.; Biswas, R.; Roy, A.R. Intuitionistic fuzzy soft sets. J. Fuzzy Math. 2001, 9, 677–692. [Google Scholar]
  7. Maji, P.K. Neutrosophic soft set. Ann. Fuzzy Math. Inform. 2013, 5, 157–168. [Google Scholar]
  8. Sahin, R.; Kucuk, A. On similarity and entropy of neutrosophic soft sets. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 2014, 27, 2417–2430. [Google Scholar]
  9. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
  10. Feng, F.; Liu, X.; Leoreanu-Fotea, B.; Jun, Y.B. Soft sets and soft rough sets. Inf. Sci. 2011, 181, 1125–1137. [Google Scholar] [CrossRef]
  11. Meng, D.; Zhang, X.; Qin, K. Soft rough fuzzy sets and soft fuzzy rough sets. Comput. Math. Appl. 2011, 62, 4635–4645. [Google Scholar] [CrossRef]
  12. Sun, B.Z.; Ma, W. Soft fuzzy rough sets and its application in decision making. Artif. Intell. Rev. 2014, 41, 67–80. [Google Scholar] [CrossRef]
  13. Sun, B.Z.; Ma, W.; Liu, Q. An approach to decision making based on intuitionistic fuzzy rough sets over two universes. J. Oper. Res. Soc. 2013, 64, 1079–1089. [Google Scholar] [CrossRef]
  14. Zhang, X.; Zhou, B.; Li, Q. A general frame for intuitionistic fuzzy rough sets. Inf. Sci. 2012, 216, 34–49. [Google Scholar] [CrossRef]
  15. Zhang, X.; Dai, J.; Yu, Y. On the union and intersection operations of rough sets based on various approximation spaces. Inf. Sci. 2015, 292, 214–229. [Google Scholar] [CrossRef]
  16. Zhang, H.; Shu, L.; Liao, S. Intuitionistic fuzzy soft rough set and its application in decision making. Abstr. Appl. Anal. 2014, 2014, 287314. [Google Scholar] [CrossRef]
  17. Zhang, H.; Xiong, L.; Ma, W. Generalized intuitionistic fuzzy soft rough set and its application in decision making. J. Comput. Anal. Appl. 2016, 20, 750–766. [Google Scholar]
  18. Broumi, S.; Smarandache, F. Interval-valued neutrosophic soft rough sets. Int. J. Comput. Math. 2015, 2015, 232919. [Google Scholar] [CrossRef]
  19. Broumi, S.; Smarandache, F.; Dhar, M. Rough neutrosophic sets. Neutrosophic Sets Syst. 2014, 3, 62–67. [Google Scholar]
  20. Yang, H.L.; Zhang, C.L.; Guo, Z.L.; Liu, Y.L.; Liao, X. A hybrid model of single valued neutrosophic sets and rough sets: Single valued neutrosophic rough set model. Soft Comput. 2016. [Google Scholar] [CrossRef]
  21. Akram, M.; Nawaz, S. Operations on soft graphs. Fuzzy Inf. Eng. 2015, 7, 423–449. [Google Scholar] [CrossRef]
  22. Akram, M.; Nawaz, S. On fuzzy soft graphs. Ital. J. Pure Appl. Math. 2015, 34, 497–514. [Google Scholar]
  23. Akram, M.; Shahzadi, S. Novel intuitionistic fuzzy soft multiple-attribute decision-making methods. Neural Comput. Appl. 2016. [Google Scholar] [CrossRef]
  24. Shahzadi, S.; Akram, M. Intuitionistic fuzzy soft graphs with applications. J. Appl. Math. Comput. 2016, 55, 369–392. [Google Scholar] [CrossRef]
  25. Akram, M.; Shahzadi, S. Neutrosophic soft graphs with application. J. Intell. Fuzzy Syst. 2017, 2, 841–858. [Google Scholar] [CrossRef]
  26. Zafar, F.; Akram, M. A novel decision-making method based on rough fuzzy information. Int. J. Fuzzy Syst. 2017, 1–15. [Google Scholar] [CrossRef]
  27. Peng, T.Z.; Qiang, W.J.; Yu, Z.H. Hybrid single-valued neutrosophic MCGDM with QFD for market segment evaluation and selection. J. Intell. Fuzzy Syst. 2018, 34, 177–187. [Google Scholar]
  28. Qiang, W.J.; Xu, Z.; Yu, Z.H. Hotel recommendation approach based on the online consumer reviews using interval neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2018, 34, 381–394. [Google Scholar]
  29. Luo, S.Z.; Cheng, P.F.; Wang, J.Q.; Huang, Y.J. Selecting Project Delivery Systems Based on Simplified Neutrosophic Linguistic Preference Relations. Symmetry 2017, 9, 151. [Google Scholar] [CrossRef]
  30. Nie, R.X.; Wang, J.Q.; Zhang, H.Y. Solving solar-wind power station location problem using an extended WASPAS technique with Interval neutrosophic sets. Symmetry 2017, 9, 106. [Google Scholar] [CrossRef]
  31. Wu, X.; Wang, J.; Peng, J.; Qian, J. A novel group decision-making method with probability hesitant interval neutrosphic set and its application in middle level manager’s selection. Int. J. Uncertain. Quant. 2018. [Google Scholar] [CrossRef]
  32. Medina, J.; Ojeda-Aciego, M. Multi-adjoint t-concept lattices. Inf. Sci. 2010, 180, 712–725. [Google Scholar] [CrossRef]
  33. Pozna, C.; Minculete, N.; Precup, R.E.; Kóczy, L.T.; Ballagi, Á. Signatures: Definitions, operators and applications to fuzzy modeling. Fuzzy Sets Syst. 2012, 201, 86–104. [Google Scholar] [CrossRef]
  34. Nowaková, J.; Prílepok, M.; Snášel, V. Medical image retrieval using vector quantization and fuzzy S-tree. J. Med. Syst. 2017, 41, 1–16. [Google Scholar] [CrossRef] [PubMed]
  35. Kumar, A.; Kumar, D.; Jarial, S.K. A hybrid clustering method based on improved artificial bee colony and fuzzy C-Means algorithm. Int. J. Artif. Intell. 2017, 15, 40–60. [Google Scholar]
Figure 1. Neutrosophic soft rough graph G = ( G ̲ , G ¯ ) .
Figure 1. Neutrosophic soft rough graph G = ( G ̲ , G ¯ ) .
Axioms 07 00014 g001
Figure 2. Neutrosophic soft rough graph G 1 = ( G ̲ 1 , G ¯ 1 ) .
Figure 2. Neutrosophic soft rough graph G 1 = ( G ̲ 1 , G ¯ 1 ) .
Axioms 07 00014 g002
Figure 3. Neutrosophic soft rough graph G 2 = ( G ̲ 2 , G ¯ 2 ) .
Figure 3. Neutrosophic soft rough graph G 2 = ( G ̲ 2 , G ¯ 2 ) .
Axioms 07 00014 g003
Figure 4. Neutrosophic soft rough graph G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) .
Figure 4. Neutrosophic soft rough graph G 1 G 2 = ( G ̲ 1 G ̲ 2 , G ¯ 1 G ¯ 2 ) .
Axioms 07 00014 g004
Figure 5. Cartesian product of two neutrosophic soft rough graphs G 1 × G 2 .
Figure 5. Cartesian product of two neutrosophic soft rough graphs G 1 × G 2 .
Axioms 07 00014 g005aAxioms 07 00014 g005b
Figure 6. Neutrosophic soft rough graph G 1 = ( G ̲ 1 , G ¯ 1 ) .
Figure 6. Neutrosophic soft rough graph G 1 = ( G ̲ 1 , G ¯ 1 ) .
Axioms 07 00014 g006
Figure 7. Neutrosophic soft rough graph G 2 = ( G ̲ 2 , G ¯ 2 ) .
Figure 7. Neutrosophic soft rough graph G 2 = ( G ̲ 2 , G ¯ 2 ) .
Axioms 07 00014 g007
Figure 8. Neutrosophic soft rough graph G 1 G 2 = ( G ̲ 1 G 2 , G ¯ 1 G ¯ 2 ) .
Figure 8. Neutrosophic soft rough graph G 1 G 2 = ( G ̲ 1 G 2 , G ¯ 1 G ¯ 2 ) .
Axioms 07 00014 g008
Figure 9. Neutrosophic soft rough graph G = ( G ̲ , G ¯ ) .
Figure 9. Neutrosophic soft rough graph G = ( G ̲ , G ¯ ) .
Axioms 07 00014 g009
Figure 10. Neutrosophic soft rough graph G ´ = ( G ̲ ´ , G ¯ ´ ) .
Figure 10. Neutrosophic soft rough graph G ´ = ( G ̲ ´ , G ¯ ´ ) .
Axioms 07 00014 g010
Figure 11. Strong neutrosophic soft rough graph G = ( Q A , S B ) .
Figure 11. Strong neutrosophic soft rough graph G = ( Q A , S B ) .
Axioms 07 00014 g011
Figure 12. Neutrosophic soft rough graph G = ( G ̲ , G ¯ ) .
Figure 12. Neutrosophic soft rough graph G = ( G ̲ , G ¯ ) .
Axioms 07 00014 g012
Table 1. Neutrosophic soft relation Q.
Table 1. Neutrosophic soft relation Q.
Q w 1 w 2 w 3 w 4
e 1 ( 0.3 , 0.4 , 0.5 ) ( 0.4 , 0.2 , 0.3 ) ( 0.1 , 0.5 , 0.4 ) ( 0.2 , 0.3 , 0.4 )
e 2 ( 0.1 , 0.5 , 0.4 ) ( 0.3 , 0.4 , 0.6 ) ( 0.4 , 0.4 , 0.3 ) ( 0.5 , 0.3 , 0.8 )
e 3 ( 0.3 , 0.4 , 0.4 ) ( 0.4 , 0.6 , 0.7 ) ( 0.3 , 0.5 , 0.4 ) ( 0.5 , 0.4 , 0.6 )
Table 2. Neutrosophic soft set ( Q , M ) .
Table 2. Neutrosophic soft set ( Q , M ) .
Q u 1 u 2 u 3
e 1 ( 0.4 , 0.5 , 0.6 ) ( 0.7 , 0.3 , 0.2 ) ( 0.6 , 0.3 , 0.4 )
e 2 ( 0.5 , 0.3 , 0.6 ) ( 0.3 , 0.4 , 0.3 ) ( 0.7 , 0.2 , 0.3 )
e 3 ( 0.7 , 0.2 , 0.3 ) ( 0.6 , 0.5 , 0.4 ) ( 0.7 , 0.2 , 0.4 )
Table 3. Neutrosophic soft relation S.
Table 3. Neutrosophic soft relation S.
S u 1 u 2 u 2 u 3 u 2 u 2 u 3 u 2
e 1 e 3 ( 0.4 , 0.4 , 0.5 ) ( 0.6 , 0.3 , 0.4 ) ( 0.5 , 0.4 , 0.2 ) ( 0.5 , 0.4 , 0.3 )
e 2 e 1 ( 0.3 , 0.3 , 0.4 ) ( 0.3 , 0.2 , 0.3 ) ( 0.2 , 0.3 , 0.3 ) ( 0.7 , 0.2 , 0.2 )
e 3 e 2 ( 0.3 , 0.3 , 0.2 ) ( 0.5 , 0.3 , 0.2 ) ( 0.2 , 0.4 , 0.4 ) ( 0.3 , 0.4 , 0.4 )
Table 4. Neutrosophic soft relation Q.
Table 4. Neutrosophic soft relation Q.
Q v 1 v 2 v 3 v 4 v 5 v 6
e 1 ( 0.4 , 0.5 , 0.6 ) ( 0.7 , 0.3 , 0.5 ) ( 0.6 , 0.2 , 0.3 ) ( 0.4 , 0.4 , 0.2 ) ( 0.5 , 0.5 , 0.6 ) ( 0.4 , 0.5 , 0.6 )
e 2 ( 0.5 , 0.4 , 0.2 ) ( 0.6 , 0.4 , 0.5 ) ( 0.7 , 0.3 , 0.4 ) ( 0.5 , 0.3 , 0.2 ) ( 0.4 , 0.5 , 0.4 ) ( 0.6 , 0.5 , 0.4 )
e 3 ( 0.5 , 0.4 , 0.1 ) ( 0.6 , 0.3 , 0.2 ) ( 0.5 , 0.4 , 0.3 ) ( 0.6 , 0.2 , 0.3 ) ( 0.5 , 0.4 , 0.4 ) ( 0.7 , 0.3 , 0.5 )
Table 5. Neutrosophic soft relation S.
Table 5. Neutrosophic soft relation S.
S v 1 v 1 v 1 v 2 v 2 v 1 v 2 v 3
e 1 e 2 ( 0.4 , 0.4 , 0.2 ) ( 0.4 , 0.4 , 0.5 ) ( 0.4 , 0.4 , 0.5 ) ( 0.6 , 0.3 , 0.4 )
e 2 e 3 ( 0.5 , 0.4 , 0.1 ) ( 0.4 , 0.3 , 0.2 ) ( 0.4 , 0.3 , 0.2 ) ( 0.5 , 0.3 , 0.2 )
e 1 e 3 ( 0.4 , 0.4 , 0.1 ) ( 0.4 , 0.2 , 0.2 ) ( 0.4 , 0.2 , 0.2 ) ( 0.5 , 0.3 , 0.3 )
Table 6. Neutrosophic soft relation S.
Table 6. Neutrosophic soft relation S.
S v 3 v 4 v 4 v 5 v 5 v 2 v 5 v 6
e 1 e 2 ( 0.4 , 0.2 , 0.2 ) ( 0.4 , 0.4 , 0.2 ) ( 0.4 , 0.3 , 0.4 ) ( 0.3 , 0.2 , 0.3 )
e 2 e 3 ( 0.6 , 0.2 , 0.4 ) ( 0.3 , 0.2 , 0.1 ) ( 0.4 , 0.3 , 0.2 ) ( 0.4 , 0.3 , 0.4 )
e 1 e 3 ( 0.4 , 0.2 , 0.3 ) ( 0.4 , 0.3 , 0.1 ) ( 0.5 , 0.3 , 0.2 ) ( 0.5 , 0.3 , 0.5 )
Table 7. Neutrosophic soft relation Q.
Table 7. Neutrosophic soft relation Q.
Q v 1 v 2 v 3 v 4
e 1 ( 0.5 , 0.4 , 0.3 ) ( 0.7 , 0.6 , 0.5 ) ( 0.7 , 0.6 , 0.4 ) ( 0.5 , 0.7 , 0.4 )
e 2 ( 0.3 , 0.5 , 0.6 ) ( 0.4 , 0.5 , 0.1 ) ( 0.3 , 0.6 , 0.5 ) ( 0.4 , 0.8 , 0.2 )
e 3 ( 0.7 , 0.5 , 0.8 ) ( 0.2 , 0.3 , 0.8 ) ( 0.7 , 0.3 , 0.5 ) ( 0.6 , 0.4 , 0.3 )
Table 8. Neutrosophic soft relation S.
Table 8. Neutrosophic soft relation S.
S v 1 v 2 v 1 v 4 v 2 v 2 v 2 v 3 v 3 v 3 v 3 v 4
e 1 e 2 (0.3, 0.4 ,0.1) ( 0.4 , 0.4 , 0.2 ) ( 0.4 , 0.5 , 0.1 ) ( 0.3 , 0.5 , 0.4 ) ( 0.3 , 0.4 , 0.4 ) ( 0.4 , 0.5 , 0.2 )
e 1 e 3 (0.2 ,0.3 ,0.3) ( 0.4 , 0.3 , 0.2 ) ( 0.2 , 0.3 , 0.5 ) ( 0.4 , 0.3 , 0.3 ) ( 0.5 , 0.3 , 0.3 ) ( 0.5 , 0.4 , 0.3 )
e 2 e 3 (0.2,0.3,0.5) ( 0.3 , 0.3 , 0.3 ) ( 0.2 , 0.3 , 0.1 ) ( 0.4 , 0.3 , 0.1 ) ( 0.3 , 0.3 , 0.5 ) ( 0.3 , 0.4 , 0.3 )
Table 9. Neutrosophic soft rough set on V.
Table 9. Neutrosophic soft rough set on V.
V Q ¯ A Q ̲ A
u ( 0.8 , 0.5 , 0.2 ) ( 0.7 , 0.5 , 0.2 )
v ( 0.9 , 0.5 , 0.1 ) ( 0.7 , 0.5 , 0.2 )
w ( 0.7 , 0.5 , 0.1 ) ( 0.7 , 0.5 , 0.2 )
Table 10. Neutrosophic soft rough set on E.
Table 10. Neutrosophic soft rough set on E.
E S ¯ B S ̲ B
u v ( 0.8 , 0.5 , 0.2 ) ( 0.7 , 0.5 , 0.2 )
v w ( 0.7 , 0.5 , 0.1 ) ( 0.7 , 0.5 , 0.2 )
w u ( 0.7 , 0.5 , 0.2 ) ( 0.7 , 0.5 , 0.2 )
Table 11. Neutrosophic soft set ( Q , M ) .
Table 11. Neutrosophic soft set ( Q , M ) .
Q u 1 u 2 u 3 u 4 u 5
e 1 ( 0.4 , 0.5 , 0.6 ) ( 0.5 , 0.3 , 0.6 ) ( 0.7 , 0.2 , 0.3 ) ( 0.5 , 0.7 , 0.5 ) ( 0.6 , 0.5 , 0.4 )
e 2 ( 0.7 , 0.3 , 0.2 ) ( 0.3 , 0.4 , 0.3 ) ( 0.6 , 0.5 , 0.4 ) ( 0.8 , 0.4 , 0.6 ) ( 0.7 , 0.8 , 0.5 )
e 3 ( 0.6 , 0.3 , 0.4 ) ( 0.7 , 0.2 , 0.3 ) ( 0.7 , 0.2 , 0.4 ) ( 0.8 , 0.7 , 0.6 ) ( 0.7 , 0.3 , 0.5 )
Table 12. Neutrosophic soft relation S.
Table 12. Neutrosophic soft relation S.
S u 1 u 2 u 1 u 3 u 4 u 1 u 2 u 3 u 5 u 3 u 2 u 4 u 2 u 5
e 1 e 2 (0.3, 0.4 ,0.2) ( 0.4 , 0.4 , 0.5 ) ( 0.4 , 0.4 , 0.5 ) ( 0.6 , 0.3 , 0.4 ) ( 0.4 , 0.2 , 0.2 ) ( 0.4 , 0.4 , 0.2 ) ( 0.4 , 0.3 , 0.4 )
e 2 e 3 (0.5 ,0.4 ,0.1) ( 0.4 , 0.3 , 0.2 ) ( 0.4 , 0.3 , 0.2 ) ( 0.3 , 0.3 , 0.2 ) ( 0.6 , 0.2 , 0.4 ) ( 0.3 , 0.2 , 0.1 ) ( 0.3 , 0.3 , 0.2 )
e 1 e 3 (0.4,0.4,0.1) ( 0.4 , 0.2 , 0.2 ) ( 0.4 , 0.2 , 0.2 ) ( 0.5 , 0.3 , 0.3 ) ( 0.4 , 0.2 , 0.3 ) ( 0.4 , 0.3 , 0.1 ) ( 0.5 , 0.3 , 0.2 )

Share and Cite

MDPI and ACS Style

Akram, M.; Malik, H.M.; Shahzadi, S.; Smarandache, F. Neutrosophic Soft Rough Graphs with Application. Axioms 2018, 7, 14. https://doi.org/10.3390/axioms7010014

AMA Style

Akram M, Malik HM, Shahzadi S, Smarandache F. Neutrosophic Soft Rough Graphs with Application. Axioms. 2018; 7(1):14. https://doi.org/10.3390/axioms7010014

Chicago/Turabian Style

Akram, Muhammad, Hafsa M. Malik, Sundas Shahzadi, and Florentin Smarandache. 2018. "Neutrosophic Soft Rough Graphs with Application" Axioms 7, no. 1: 14. https://doi.org/10.3390/axioms7010014

APA Style

Akram, M., Malik, H. M., Shahzadi, S., & Smarandache, F. (2018). Neutrosophic Soft Rough Graphs with Application. Axioms, 7(1), 14. https://doi.org/10.3390/axioms7010014

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop