Ordering Planar Graphs by Their Signless Laplacian Spectral Radii
Abstract
1. Introduction
2. Preliminaries
3. Ordering Planar Graphs by Q-Spectral Radius
- (i)
- for ;
- (ii)
- for .
4. Conclusions
- 1.
- The graph has the largest signless Laplacian eigenvalues. The graphs and , which are derived by removing specific edges from , achieve the second and third largest , respectively.
- 2.
- As for the application, we determine the planar graphs with the first three largest sums of the first and second largest signless Laplacian eigenvalues . The order of matches with that of , and we give explicit upper bounds that refine existing conjectures for planar graphs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barthélemy, M. Morphogenesis of Spatial Networks; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Schwenk, A.J.; Wilson, R.J. On the eigenvalues of a graph. In Selected Topics in Graph Theory; Academic Press: New York, NY, USA, 1978; pp. 307–336. [Google Scholar]
- Boots, B.N.; Royle, G.F. A conjecture on the maximum values of the principal eigenvalue of a planar graph. Geogr. Anal. 1991, 23, 276–282. [Google Scholar] [CrossRef]
- Cao, D.; Vince, A. The spectral radius of a planar graph. Linear Algebra Appl. 1993, 187, 251–257. [Google Scholar] [CrossRef]
- Zhai, M.; Xue, J.; Lou, Z. The signless Laplacian spectral radius of graphs with a prescribed number of edges. Linear Algebra Appl. 2020, 603, 795–811. [Google Scholar] [CrossRef]
- Zhai, M.; Xue, J.; Liu, R. An extremal problem on Q-spectral radii of graphs with given size and matching number. Linear Multilinear Algebra 2022, 70, 5334–5345. [Google Scholar] [CrossRef]
- Liu, N.; Guo, S. A note on the signless Laplacian spectral ordering of graphs with given size. J. Math. Res. Appl. 2024, 44, 304–312. [Google Scholar]
- Guo, S.; Zhang, R. Sharp upper bounds on the Q-index of (minimally) 2-connected graphs with given size. Discret. Appl. Math. 2024, 320, 408–415. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, J.; Guo, S. Maxima of the signless Laplacian spectral radius for planar graphs. Electron. J. Linear Algebra 2015, 30, 795–811. [Google Scholar] [CrossRef]
- Tait, M.; Tobin, J. Three conjectures in extremal spectral graph theory. J. Combin. Theory Ser. B 2017, 126, 137–161. [Google Scholar] [CrossRef]
- Wang, J.; Belardo, F.; Huang, Q.; Borovićanin, B. On the two largest Q-eigenvalues of graphs. Discret. Math. 2010, 310, 2858–2866. [Google Scholar] [CrossRef]
- Das, K.C. On conjectures involving second largest signless Laplacian eigenvalue of graphs. Linear Algebra Appl. 2010, 432, 3018–3029. [Google Scholar] [CrossRef]
- Das, K.C. Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs. Linear Algebra Appl. 2011, 435, 2420–2424. [Google Scholar] [CrossRef]
- Chen, Y. Properties of spectra of graphs and line graphs. Appl. Math. J. Chin. Univ. Ser. B 2004, 17, 371–376. [Google Scholar]
- Aouchiche, M.; Hansen, P.; Lucas, C. On the extremal values of the second largest Q-eigenvalue. Linear Algebra Appl. 2011, 435, 2591–2606. [Google Scholar] [CrossRef]
- De Lima, L.S.; Nikiforov, V. On the second largest eigenvalue of the signless Laplacian. Linear Algebra Appl. 2013, 438, 1215–2606. [Google Scholar] [CrossRef]
- Cvetković, D.; Simić, S.K. Towards a spectral theory of graphs based on the signless Laplacian (I). Publ. Inst. Math. 2009, 85, 19–33. [Google Scholar] [CrossRef]
- Cvetković, D.; Rowlinson, P.; Simić, S.K. Eigenvalue bounds for the signless Laplacian (I). Publ. Inst. Math. 2007, 81, 11–27. [Google Scholar] [CrossRef]
- Das, K.C. Nordhaus–Gaddum-type result on the second largest signless Laplacian eigenvalue of a graph. Linear Multilinear Algebra 2021, 69, 1035–1044. [Google Scholar] [CrossRef]
- Huang, X.; Lin, H. Signless Laplacian eigenvalue problem of Nordhaus–Gaddum-type. Linear Algebra Appl. 2019, 581, 336–353. [Google Scholar] [CrossRef]
- Aouchiche, M.; El Hallaoui, I. Minimum values of the second largest Q-eigenvalue. Discret. Appl. Math. 2022, 306, 46–51. [Google Scholar] [CrossRef]
- Ashraf, F.; Omidi, G.R.; Tayfeh-Rezaie, B. On the sum of signless Laplacian eigenvalues of a graph. Linear Algebra Appl. 2013, 438, 4539–4546. [Google Scholar] [CrossRef]
- Das, K.C. The Laplacian spectrum of a graph. Comput. Math. Appl. 2004, 48, 715–724. [Google Scholar] [CrossRef]
- Wang, J.; Belardo, F. A note on the signless Laplacian eigenvalues of graphs. Linear Algebra Appl. 2011, 435, 2585–2590. [Google Scholar] [CrossRef]
- Van den Heuvel, J. Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 1995, 226–228, 723–730. [Google Scholar] [CrossRef]
- Brouwer, A.E.; Haemers, W.H. Spectra of Graphs; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, K.; Lin, Z.; Zhang, S.; Ye, C. Ordering Planar Graphs by Their Signless Laplacian Spectral Radii. Axioms 2026, 15, 93. https://doi.org/10.3390/axioms15020093
Wang K, Lin Z, Zhang S, Ye C. Ordering Planar Graphs by Their Signless Laplacian Spectral Radii. Axioms. 2026; 15(2):93. https://doi.org/10.3390/axioms15020093
Chicago/Turabian StyleWang, Ke, Zhen Lin, Shumin Zhang, and Chengfu Ye. 2026. "Ordering Planar Graphs by Their Signless Laplacian Spectral Radii" Axioms 15, no. 2: 93. https://doi.org/10.3390/axioms15020093
APA StyleWang, K., Lin, Z., Zhang, S., & Ye, C. (2026). Ordering Planar Graphs by Their Signless Laplacian Spectral Radii. Axioms, 15(2), 93. https://doi.org/10.3390/axioms15020093
