Next Article in Journal
Hybrid Beamforming via Fourth-Order Tucker Decomposition for Multiuser Millimeter-Wave Massive MIMO Systems
Previous Article in Journal
Fixed-Point Theorems in Sequential G-Metric Spaces and Their Application to the Solvability of a System of Integral Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Partitioning AG(2,q), q≡7 Mod 12, into MöbiusKantor Configurations and One Point

by
Stefano Innamorati
Department of Industrial, Information Engineering and Economic, University of L’Aquila, Piazzale Ernesto Pontieri 1, I-67100 L’Aquila, Italy
Axioms 2025, 14(9), 688; https://doi.org/10.3390/axioms14090688
Submission received: 28 July 2025 / Revised: 2 September 2025 / Accepted: 7 September 2025 / Published: 9 September 2025
(This article belongs to the Section Geometry and Topology)

Abstract

By the cyclic structure of the affine plane AG(2,q), q≡7 mod 12, a mixed partition into a set of Möbius–Kantor configurations and a one-point set is provided. This generalizes a 2006 result of L. Berardi and T. Masini, who partitioned the affine plane of order 7 into a set of Möbius–Kantor configurations and a one-point set.

1. Introduction

Finite geometry is a fundamental concept of combinatorics, playing a crucial role in several mathematical contexts and having numerous applications in various fields, including coding theory, computer science and cryptography, particularly in the design of cryptographic protocols and algorithms. A problem in finite geometry that has been widely investigated is the possibility of partitioning the affine or projective space into objects that have the same geometric properties cf. [1,2,3,4,5,6,7]. For arithmetical reasons, sometimes it is not possible to partition a given geometry uniformly, although a uniform partition may be possible if one or more objects of a given kind are removed. We shall call such a non-uniform partition a mixed partition of a geometry, cf. [8,9,10,11,12,13]. Let p be prime and q = ph, h ≥ 1. Then, F q denotes the finite field of order q. A vector plane over F q will be denoted as V(2,q). The affine plane over the field F q , denoted as AG(2, F q ), shortly, AG(2,q), is an incidence geometry of which the elements are the additive cosets of the vector subspaces of V(2,q). The incidence is symmetrized set-theoretic containment. As such, a point of AG(2,q) is represented by a unique vector of V(2,q), and a line is represented by a unique coset of a 1-dimensional vector subspace. Finite affine planes cannot be cyclic because they do not have the same number of lines and points. However, if we choose a single point (say ∞) from an affine plane, together with all the lines through that point, we can define a collineation σ such that the cyclic group generated by σ fixes ∞ and acts regularly on the set of the remaining points and on the set of remaining lines, cf. [14,15,16]. A Möbius–Kantor configuration 83 is a configuration consisting of eight points and eight lines with three points on each line and three lines on each point. It is not possible to draw points and lines having this pattern of incidences in the Euclidean plane. But it is possible in the complex plane. In AG(2,q), it is well-known that a Möbius–Kantor configuration 83 occurs for q≡0, 1 (mod 3), cf. [17]. Regarding 4, the smallest order q with q≡1 mod 3, in [18], the authors proved that AG(2,4) contains a partition into two Möbius–Kantor configurations 83. Taking into account 7, the second order q with q≡1 mod 3, in a 2006 paper, L. Berardi and T. Masini, cf. [19], showed by incidence properties that the affine plane AG(2,7) allows a mixed partition into one point ∞ and 6 Möbius–Kantor configurations 83. In this paper, through the cyclic structure of the affine plane AG(2,q), q≡7 mod 12, a mixed partition into a set of Möbius–Kantor configurations and a one-point set is provided. As usual, here a quadrilateral consists of four points in general positions, i.e., no three collinear. The remainder of this paper is structured as follows. Section 2 introduces the methodology used for the cyclic representation of the affine plane AG(2,q). Section 3 presents our findings, synthesizing key insights. Section 4 shows the construction in AG(2,7) with relevant figures and tables. Section 5, by our findings, derives a mixed partition in AG(2,19). In Section 6, we draw a discussion and put forward future research.

2. The Cyclic Representation of AG(2,q)

In this section, we describe the cyclic structure of the affine plane of order q. Let us consider a primitive polynomial of degree two in F q , p(x) = ax2 + bx + c, q odd. The elements b ± b 2 4 a c 2 a are roots of p(x), and then they are primitive elements of F q 2 . Since the element s = b 2 4 a c is a non-square element of F q , we can identify any point (x,y) of AG(2,q) with the element z = x + yr of with r2 = s in the quadratic extension F q 2 of F q . Let α = α1 + α2r denote a primitive element of F q 2 . The map σ: z–>αz is the linear collineation x y = α 1 α 2 s α 2 α 1 x y of AG(2,q) because
z’ = x’ + y’r = σ(z) = αz = (α1 + α2r)·(x + yr) = (α1x + α2ys) + (α1y + α2x)r.
The cyclic group σ , generated by σ, has order q2 − 1, fixes the point 0 , 0 , and σ is sharply transitive on the points of AG(2,q) distinct from 0 , 0 . If we choose the point 1 , 0 as base point, then any point x , y 0 , 0 can be obtained uniquely as x , y = σ i 1 , 0 , with i Z q 2 1 . Since the points of AG(2,q) can be represented by the set 0 , 0 Ω = 0 , 0 σ i 1 , 0 |   0 i q 2 2 , any point σ i 1 , 0   can be identified with the exponent   i ,   0 i q 2 2 , and so with the elements of the additive cyclic group Z q 2 1 . Therefore, the set of points of AG(2,q) is 0 , 0 0 , 1 , , q 2 2 .
The q 2 1 lines not containing the point 0 , 0 of the plane are found by selecting any line; for example, by choosing the line l 0 x = 1 , and by adding 1 to each point of the preceding line, beginning with l 0 and using addition modulo q 2 1 . Any line ℓ not containing the point 0 , 0 is an affine difference set l = d 1 , , d q of Z q 2 1 relative to the subgroup Z q 1 of Z q 2 1 , i.e., the set of differences D = d h d k   : d h , d k l , h k contains each element of Z q 2 1 Z q 1 exactly once but no element of Z q 1 . The remaining q+1 lines of AG(2,q) containing the point 0 , 0 are obtained tacking as base line, m 0 , the union of 0 , 0 with the unique subgroup of order q−1, Z q 1 , of Z q 2 1 . The remaining q lines containing the point 0 , 0 of the plane are found by adding 1 to each point, different from 0 , 0 , of the preceding line, beginning with m 0 , and using addition modulo   q 2 1 . Therefore, the lines of AG(2,q) are of two types, according to whether the line contains the point 0 , 0 or not:
  • The i t h line l i , noncontaining the point 0 , 0 with i 0 , 1 , , q 2 2 , is the set
    l i = d 1 + i , , d q + i     m o d   q 2 1
    where d h , h 1 , 2 , , q , are q integers modulo q 2 1 , with d h 0   m o d   q + 1 , that belong to an affine difference set of order q, i.e., the q 2 q differences d h d k   m o d   q 2 1 , h , k 1 , 2 , , q ,   h k , are such that d h d k 0   m o d   q + 1 .
  • The j t h line m j , containing the point 0 , 0 with j 0 , 1 , , q , is the set
    m j = 0 , 0 j , q + 1 + j , 2 q + 1 + j , , q 2 q + 1 + j     m o d   q 2 1 ,
    i.e., the other q−1 points, different from 0 , 0 , are the points i ,   i 0 , 1 , , q 2 2 , with i j   m o d   q + 1 .

3. The Construction of the Mixed Partition of AG(2,q), q≡7 Mod 12

In this section, we partition the affine plane of order q into a set of Möbius–Kantor configurations and a one-point set. We prove the following
Theorem 1.
Any affine plane AG(2,q) with q≡7 mod 12, admits a partition into a set of Möbius- Kantor configurations 83 plus a set consisting only of one point.
Proof. 
Let us suppose that q≡7 mod 12. The q 2 1 4 cosets of the unique subgroup of order 4, Z 4 , of Z q 2 1 , define a partition C 0 , C 1 , , C q 2 5 4 of AG(2,q)− 0 , 0 in q 2 1 4 quadrilaterals where C 0 = 0 , q 2 1 4 , q 2 1 2 , 3 q 2 1 4 . We find that there is at least one quadrilateral
C 2 j + 1 = σ 2 j + 1 C 0 = 2 j + 1 , q 2 1 4 + 2 j + 1 , q 2 1 2 + 2 j + 1 , 3 q 2 1 4 + 2 j + 1 = 2 j + 1 , q 2 + 8 j + 3 4 , q 2 + 4 j + 1 2 , 3 q 2 + 8 j + 1 4 ,   j 0 , 1 , , q 2 9 8  
which is mutually inscribed and circumscribed with C 0 . Thus, the union C 0 C 2 j + 1 is a Möbius–Kantor configuration 83, cf. [20].
Taking into account σ 2 i C 0 C 2 j + 1 = C 2 i ( m o d q 2 1 4 ) C 2 i + 2 j + 1 ( m o d q 2 1 4 ) , i = 0 , 1 , 2 , , q 2 9 8 , we obtain the required partition. □
In the next sections, we present two examples. The first one shows that the Berardi–Masini mixed partition of AG(2,7) is cyclic, while the second one is focused on the role the cyclic structure of AG(2,19) plays in the construction developed in Theorem 1.

4. The Mixed Partition of AG(2,7)

Now, by explicitly constructing the cyclic structure of AG(2,7), we prove
Theorem 2.
Any affine plane AG(2,7) admits a partition into a set of Möbius–Kantor configurations 83 plus a set consisting only of one point.
Proof. 
Let us consider a primitive polynomial of degree two with minimal weight, i.e., the minimal number of nonzero coefficients, among all primitives of that degree over in F 7 , p(x) = x2 + x + 3, cf. [21]. The element 3 + 4 3 is a root of p(x) and then it is a primitive element of F 7 2 . Thus, the matrix 3 5 4 3 induces a cycle σ on the set of points (x,y) ≠ (0,0) of AG(2,7). If we choose the point (1,0) as base point, then 0 = σ 0 1 , 0 = 1 , 0 ;   1 = σ 1 , 0 = 3 5 4 3 1 0 = 3 4 ;   2 = σ 2 1 , 0 = σ 3 , 4 = 3 5 4 3 3 4 = 1 3 ; by continuing in this way and by denoting the points represented by σ i 1 , 0 simply by i , the points of AG(2,7) can be identified with = 0 , 0 and the elements of the additive cyclic group Z 48 , the integers modulo 48, as shown in Table 1. Actually, to write the table, it is not necessary to calculate all the values. It is sufficient to calculate only the first 8 values and see how the point (1,0) is transformed by σ 8 . In this case σ 8 1 , 0 = 3 , 0 = 3 · 1 , 0 . Thus, the next eight points are obtained from the previous ones by multiplying them by 3 modulo 7.
Select any line, for example, we choose the line 0:= x = 1, which contains the 7-set of points written in Table 2.
The remaining lines not containing the point of the plane are found by adding 1 to each point of the preceding line beginning with 0 and using addition modulo 48.
The 48 lines not containing the point of AG(2,7) consist of the points in the rows of Table 3.
The lines containing the point of the plane are found by tacking the cosets of the unique subgroup of order 6 of Z 48 written in Table 4.
The cosets of the unique subgroup of order 8 of Z 48 define a partition in 6 conics of the set of points of AG(2,7)− written in Table 5.
The orbits of the points, different from , under the unique subgroup of order 4 of Z 48 define a partition into 12 quadrilaterals written in Table 6.
Let us take into account C0. The first quadrilateral Ci, i = 1,2,…,11, such that C0 and Ci are simultaneously inscribed and circumscribed, as shown in Figure 1, is C3.
Thus, the union C0C3 is the classical representation of the Möbius–Kantor configuration (83), cf. [20]. In Figure 2 below, from MathWorld, is the Möbius–Kantor configuration (83).
Finally, we prove the cyclic partition of AG(2,7). Since σ i C 0 = C i , we have that σ 0 C 0 C 3 = C 0 C 3 , σ 2 C 0 C 3 = C 2 C 5 , σ 4 C 0 C 3 = σ 2 C 2 C 5 = C 4 C 7 , σ 6 C 0 C 3 = σ 2 C 4 C 7 = C 6 C 9 , σ 8 C 0 C 3 = σ 2 C 6 C 9 = C 8 C 11 and σ 10 C 0 C 3 = σ 2 C 8 C 11 = C 1 C 10 . Therefore, we obtain the cyclic partition of AG(2,7), shown in Figure 3, cf. [9]. □

5. The Mixed Partition of AG(2,19)

Now, by explicitly constructing the cyclic structure of AG(2,19), we prove
Theorem 3.
Any affine plane AG(2,19) admits a partition into a set of Möbius–Kantor configurations 83 plus a set consisting only of one point.
Proof. 
Let us consider a primitive polynomial of degree two with minimal weight, i.e., the minimal number of nonzero coefficients, among all primitives of that degree over in F 19 , p(x) = x2 + x + 2, cf. [21]. It is a simple exercise to verify that the element 9 + 10 12 is a root of p(x) and then a primitive element of F 19 2 . Thus, the matrix 9 6 10 9 induces a cycle σ on the set of points (x,y) ≠ (0,0) of AG(2,19). If we choose the point (1,0) as a base point, then 0 = σ 0 1 , 0 = 1 , 0 ;   1 = σ 1 , 0 = 9 6 10 9 1 0 = 9 10 ;   2 = σ 2 1 , 0 = σ 9 , 10 = 9 6 10 9 9 10 = 8 9 ; by continuing in this way and by denoting the points represented by σ i 1 , 0 simply by i , the points of AG(2,19) can be identified with = 0 , 0 and the elements of the additive cyclic group Z 360 , the integers modulo 360, as shown in Table A1. Actually, to write the table, it is not necessary to calculate all the values. It is sufficient to calculate only the first 20 values and see how the point (1,0) is transformed by σ 20 . In this case, σ 20 1 , 0 = 2 , 0 = 2 · 1 , 0 . Thus, the next twenty points are obtained from the previous ones by multiplying them by 2 modulo 19. To enhance the readability of the paper, the cyclic structure of the points of AG(2,19) is placed as Table A1 in Appendix A.
Select any line, for example, we choose the line 0 := x = 1, which contains the 19-set of points written in Table 7.
The remaining lines not containing the point of the plane are found by adding 1 to each point of the preceding line beginning with 0 and using addition modulo 360.
The 360 lines not containing the point of AG(2,19) consist of the points in the rows of Table A2.
The lines containing the point of the plane are found by tacking the cosets of the unique subgroup of order 18 of Z 360 written in Table A3.
The orbits of the points, different from , under the unique subgroup of order 20 of Z 360 define a partition in 18 conics of the set of points of AG(2,19)− written in Table A4.
The orbits of the points, different from , under the unique subgroup of order 4 of Z 360 define a partition in 4-arcs written in Table A5.
Let us take into account C0. The first quadrilateral Ci, i = 1, 2,…, 11, such that C0 and Ci are simultaneously inscribed and circumscribed, is C9. Thus, the union C0C9 is the classical representation of the Möbius–Kantor configuration (83), cf. [20]. Finally, we prove the cyclic partition of AG(2,19). Since σ i C 0 = C i , we have that
σ 0 C 0 C 9 = C 0 C 9 ;   σ 2 C 0 C 9 = C 2 C 11 ;   σ 4 C 0 C 9 = σ 2 C 2 C 11 = C 4 C 13 ;   σ 6 C 0 C 9 = σ 2 C 4 C 13 = C 6 C 15 ;   σ 8 C 0 C 9 = σ 2 C 6 C 15 = C 8 C 17 ;   σ 10 C 0 C 9 = σ 2 C 8 C 17 = C 10 C 19 ;   σ 12 C 0 C 9 = σ 2 C 10 C 19 = C 12 C 21 ; σ 14 C 0 C 9 = σ 2 C 12 C 21 = C 14 C 23 ;   σ 16 C 0 C 9 = σ 2 C 14 C 23 = C 16 C 25 ; σ 18 C 0 C 9 = σ 2 C 16 C 25 = C 18 C 27 ;   σ 20 C 0 C 9 = σ 2 C 18 C 27 = C 20 C 29 ;   σ 22 C 0 C 9 = σ 2 C 20 C 29 = C 22 C 31 ;   σ 24 C 0 C 9 = σ 2 C 22 C 31 = C 24 C 33 ;   σ 26 C 0 C 9 = σ 2 C 24 C 33 = C 26 C 35 ;   σ 28 C 0 C 9 = σ 2 C 26 C 35 = C 28 C 37 ;   σ 30 C 0 C 9 = σ 2 C 28 C 37 = C 30 C 39 ;   σ 32 C 0 C 9 = σ 2 C 30 C 39 = C 32 C 41 ;   σ 34 C 0 C 9 = σ 2 C 32 C 41 = C 34 C 43 ;   σ 36 C 0 C 9 = σ 2 C 34 C 43 = C 36 C 45 ;   σ 38 C 0 C 9 = σ 2 C 36 C 45 = C 38 C 47 ;   σ 40 C 0 C 9 = σ 2 C 38 C 47 = C 40 C 49 ;   σ 42 C 0 C 9 = σ 2 C 40 C 49 = C 42 C 51 ;   σ 44 C 0 C 9 = σ 2 C 42 C 51 = C 44 C 53 ;   σ 46 C 0 C 9 = σ 2 C 44 C 53 = C 46 C 55 ;   σ 48 C 0 C 9 = σ 2 C 46 C 55 = C 48 C 57 ;   σ 50 C 0 C 9 = σ 2 C 48 C 57 = C 50 C 59 ;   σ 52 C 0 C 9 = σ 2 C 50 C 59 = C 52 C 61 ; σ 54 C 0 C 9 = σ 2 C 52 C 61 = C 54 C 63 ;   σ 56 C 0 C 9 = σ 2 C 54 C 63 = C 56 C 65 ;   σ 58 C 0 C 9 = σ 2 C 56 C 65 = C 58 C 67 ;   σ 60 C 0 C 9 = σ 2 C 58 C 67 = C 60 C 69 ;   σ 62 C 0 C 9 = σ 2 C 60 C 69 = C 62 C 71 ;   σ 64 C 0 C 9 = σ 2 C 62 C 71 = C 64 C 73 ;   σ 66 C 0 C 9 = σ 2 C 64 C 73 = C 66 C 75 ;   σ 68 C 0 C 9 = σ 2 C 66 C 75 = C 68 C 77 ;   σ 70 C 0 C 9 = σ 2 C 68 C 77 = C 70 C 79 ;   σ 72 C 0 C 9 = σ 2 C 70 C 79 = C 72 C 81 ;   σ 74 C 0 C 9 = σ 2 C 72 C 81 = C 74 C 83 ;   σ 76 C 0 C 9 = σ 2 C 74 C 83 = C 76 C 85 ;   σ 78 C 0 C 9 = σ 2 C 76 C 85 = C 78 C 87 ;   σ 80 C 0 C 9 = σ 2 C 78 C 87 = C 80 C 89 ;   σ 82 C 0 C 9 = σ 2 C 80 C 89 = C 1 C 82 ;   σ 84 C 0 C 9 = σ 2 C 1 C 82 = C 3 C 84 ;   σ 86 C 0 C 9 = σ 2 C 3 C 84 = C 5 C 86 ;   σ 88 C 0 C 9 = σ 2 C 5 C 86 = C 7 C 88 .
Therefore, we obtain the cyclic partition of AG(2,19). □

6. Discussion

This work presents a comprehensive study of the problem, initially proposed in [19], of partitioning the affine plane of order q, q≡7 mod 12, into one point ∞ and q 2 1 8 Möbius–Kantor configurations 83. Focusing on the cyclic structure, we establish a complete mathematical construction. We provide two concrete examples demonstrating its effectiveness. For further research, we consider the order q, q≡1 mod 12, in which the orbits of the points, different from , under the unique subgroup of order 4 of Z q 2 1 do not define a 4-arc partition, but a 4 collinear points partition, and, therefore, the proposed construction does not work and other ideas are needed.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the author.

Acknowledgments

The author sincerely thanks the anonymous referees for their valuable feedback, which greatly enhanced the presentation of this paper. Additionally, thanks go to GNSAGA of the Italian INDAM because the research was performed within the activity of this National Group.

Conflicts of Interest

The author declares no conflicts of interest.

Appendix A

Table A1. The cyclic structure of the points of AG(2,19).
Table A1. The cyclic structure of the points of AG(2,19).
= 0 , 0
0 = (1,0)1 = (9,10)2 = (8,9)3 = (12,9)4 = (10,11)5 = (4,9)
6 = (14,7)7 = (16,13)8 = (13,11)9 = (12,1)10 = (0,15)11 = (14,2)
12 = (5,6)13 = (5,9)14 = (4,17)15 = (5,3)16 = (6,1)17 = (3,12)
18 = (4,5)19 = (9,9)20 = (2,0)21 = (18,1)22 = (16,18)23 = (5,18)
24 = (1,3)25 = (8,18)26 = (9,14)27 = (13,7)28 = (7,3)29 = (5,2)
30 = (0,11)31 = (9,4)32 = (10,12)33 = (10,18)34 = (8,15)35 = (10,6)
36 = (12,2)37 = (6,5)38 = (8,10)39 = (18,18)40 = (4,0)41 = (17,2)
42 = (13,17)43 = (10,17)44 = (2,6)45 = (16,17)46 = (18,9)47 = (7,14)
48 = (14,6)49 = (10,4)50 = (0,3)51 = (18,8)52 = (1,5)53 = (1,17)
54 = (16,11)55 = (1,12)56 = (5,4)57 = (12,10)58 = (16,1)59 = (17,17)
60 = (8,0)61 = (15,4)62 = (7,15)63 = (1,15)64 = (4,12)65 = (13,15)
66 = (17,18)67 = (14,9)68 = (9,12)69 = (1,8)70 = (0,6)71 = (17,16)
72 = (2,10)73 = (2,15)74 = (13,3)75 = (2,5)76 = (10,8)77 = (5,1)
78 = (13,2)79 = (15,15)80 = (16,0)81 = (11,8)82 = (14,11)83 = (2,11)
84 = (8,5)85 = (7,11)86 = (15,17)87 = (9,18)88 = (18,5)89 = (2,16)
90 = (0,12)91 = (15,13)92 = (4,1)93 = (4,11)94 = (7,6)95 = (4,10)
96 = (1,16)97 = (10,2)98 = (7,4)99 = (11,11)100 = (13,0)101 = (3,16)
102 = (9,3)103 = (4,3)104 = (16,10)105 = (14,3)106 = (11,15)107 = (18,17)
108 = (17,10)109 = (4,13)110 = (0,5)111 = (11,7)112 = (8,2)113 = (8,3)
114 = (14,12)115 = (8,1)116 = (2,13)117 = (1,4)118 = (14,8)119 = (3,3)
120 = (7,0)121 = (6,13)122 = (18,6)123 = (8,6)124 = (13,1)125 = (9,6)
126 = (3,11)127 = (17,15)128 = (15,1)129 = (8,7)130 = (0,10)131 = (3,14)
132 = (16,4)133 = (16,6)134 = (9,5)135 = (16,2)136 = (4,7)137 = (2,8)
138 = (9,16)139 = (6,6)140 = (14,0)141 = (12,7)142 = (17,12)143 = (16,12)
144 = (7,2)145 = (18,12)146 = (6,3)147 = (15,11)148 = (11,2)149 = (16,14)
150 = (0,1)151 = (6,9)152 = (13,8)153 = (13,12)154 = (18,10)155 = (13,4)
156 = (8,14)157 = (4,16)158 = (18,13)159 = (12,12)160 = (9,0)161 = (5,14)
162 = (15,5)163 = (13,5)164 = (14,4)165 = (17,5)166 = (12,6)167 = (11,3)
168 = (3,4)169 = (13,9)170 = (0,2)171 = (12,18)172 = (7,16)173 = (7,5)
174 = (17,1)175 = (7,8)176 = (16,9)177 = (8,13)178 = (17,7)179 = (5,5)
180 = (18,0)181 = (10,9)182 = (11,10)183 = (7,10)184 = (9,8)185 = (15,10)
186 = (5,12)187 = (3,6)188 = (6,8)189 = (7,18)190 = (0,4)191 = (5,17)
192 = (14,13)193 = (14,10)194 = (15,2)195 = (14,16)196 = (13,18)197 = (16,7)
198 = (15,14)199 = (10,10)200 = (17,0)201 = (1,18)202 = (3,1)203 = (14,1)
204 = (18,16)205 = (11,1)206 = (10,5)207 = (6,12)208 = (12,16)209 = (14,17)
210 = (0,8)211 = (10,15)212 = (9,7)213 = (9,1)214 = (11,4)215 = (9,13)
216 = (7,17)217 = (13,14)218 = (11,9)219 = (1,1)220 = (15,0)221 = (2,17)
222 = (6,2)223 = (9,2)224 = (17,13)225 = (3,2)226 = (1,10)227 = (12,5)
228 = (5,13)229 = (9,15)230 = (0,16)231 = (1,11)232 = (18,14)233 = (18,2)
234 = (3,8)235 = (18,7)236 = (14,15)237 = (7,9)238 = (3,18)239 = (2,2)
240 = (11,0)241 = (4,15)242 = (12,4)243 = (18,4)244 = (15,7)245 = (6,4)
246 = (2,1)247 = (5,10)248 = (10,7)249 = (18,11)250 = (0,13)251 = (2,3)
252 = (17,9)253 = (17,4)254 = (6,16)255 = (17,14)256 = (9,11)257 = (14,18)
258 = (6,17)259 = (4,4)260 = (3,0)261 = (8,11)262 = (5,8)263 = (17,8)
264 = (11,14)265 = (12,8)266 = (4,2)267 = (10,1)268 = (1,14)269 = (17,3)
270 = (0,7)271 = (4,6)272 = (15,18)273 = (15,8)274 = (12,13)275 = (15,9)
276 = (18,3)277 = (9,17)278 = (12,15)279 = (8,8)280 = (6,0)281 = (16,3)
282 = (10,16)283 = (15,16)284 = (3,9)285 = (5,16)286 = (8,4)287 = (1,2)
288 = (2,9)289 = (15,6)290 = (0,14)291 = (8,12)292 = (11,17)293 = (11,16)
294 = (5,7)295 = (11,18)296 = (17,6)297 = (18,15)298 = (5,11)299 = (16,16)
300 = (12,0)301 = (13,6)302 = (1,13)303 = (11,13)304 = (6,18)305 = (10,13)
306 = (16,8)307 = (2,4)308 = (4,18)309 = (11,12)310 = (0,9)311 = (16,5)
312 = (3,15)313 = (3,13)314 = (10,14)315 = (3,17)316 = (15,12)317 = (17,11)
318 = (10,3)319 = (13,13)320 = (5,0)321 = (7,12)322 = (2,7)323 = (3,7)
324 = (12,17)325 = (1,7)326 = (13,16)327 = (4,8)328 = (8,17)329 = (3,5)
330 = (0,18)331 = (13,10)332 = (6,11)333 = (6,7)334 = (1,9)335 = (6,15)
336 = (11,5)337 = (15,3)338 = (1,6)339 = (7,7)340 = (10,0)341 = (14,5)
342 = (4,14)343 = (6,14)344 = (5,15)345 = (2,14)346 = (7,13)347 = (8,16)
348 = (16,15)349 = (6,10)350 = (0,17)351 = (7,1)352 = (12,3)353 = (12,14)
354 = (2,18)355 = (12,11)356 = (3,10)357 = (11,6)358 = (2,12)359 = (14,14)
Table A2. The 360 lines not containing the point of AG(2,19).
Table A2. The 360 lines not containing the point of AG(2,19).
0024525355636996117201219226231268287302325334338
1125535456647097118202220227232269288303326335339
2226545557657198119203221228233270289304327336340
3327555658667299120204222229234271290305328337341
44285657596773100121205223230235272291306329338342
55295758606874101122206224231236273292307330339343
66305859616975102123207225232237274293308331340344
77315960627076103124208226233238275294309332341345
88326061637177104125209227234239276295310333342346
99336162647278105126210228235240277296311334343347
1010346263657379106127211229236241278297312335344348
1111356364667480107128212230237242279298313336345349
1212366465677581108129213231238243280299314337346350
1313376566687682109130214232239244281300315338347351
1414386667697783110131215233240245282301316339348352
1515396768707884111132216234241246283302317340349353
1616406869717985112133217235242247284303318341350354
1717416970728086113134218236243248285304319342351355
1818427071738187114135219237244249286305320343352356
1919437172748288115136220238245250287306321344353357
2020447273758389116137221239246251288307322345354358
2121457374768490117138222240247252289308323346355359
22022467475778591118139223241248253290309324347356
23123477576788692119140224242249254291310325348357
24224487677798793120141225243250255292311326349358
25325497778808894121142226244251256293312327350359
260426507879818995122143227245252257294313328351
271527517980829096123144228246253258295314329352
282628528081839197124145229247254259296315330353
293729538182849298125146230248255260297316331354
304830548283859399126147231249256261298317332355
3159315583848694100127148232250257262299318333356
32610325684858795101128149233251258263300319334357
33711335785868896102129150234252259264301320335358
34812345886878997103130151235253260265302321336359
350913355987889098104131152236254261266303322337
3611014366088899199105132153237255262267304323338
37211153761899092100106133154238256263268305324339
38312163862909193101107134155239257264269306325340
39413173963919294102108135156240258265270307326341
40514184064929395103109136157241259266271308327342
41615194165939496104110137158242260267272309328343
42716204266949597105111138159243261268273310329344
43817214367959698106112139160244262269274311330345
44918224468969799107113140161245263270275312331346
4510192345699798100108114141162246264271276313332347
4611202446709899101109115142163247265272277314333348
47122125477199100102110116143164248266273278315334349
481322264872100101103111117144165249267274279316335350
491423274973101102104112118145166250268275280317336351
501524285074102103105113119146167251269276281318337352
511625295175103104106114120147168252270277282319338353
521726305276104105107115121148169253271278283320339354
531827315377105106108116122149170254272279284321340355
541928325478106107109117123150171255273280285322341356
552029335579107108110118124151172256274281286323342357
562130345680108109111119125152173257275282287324343358
572231355781109110112120126153174258276283288325344359
5802332365882110111113121127154175259277284289326345
5912433375983111112114122128155176260278285290327346
6022534386084112113115123129156177261279286291328347
6132635396185113114116124130157178262280287292329348
6242736406286114115117125131158179263281288293330349
6352837416387115116118126132159180264282289294331350
6462938426488116117119127133160181265283290295332351
6573039436589117118120128134161182266284291296333352
6683140446690118119121129135162183267285292297334353
6793241456791119120122130136163184268286293298335354
68103342466892120121123131137164185269287294299336355
69113443476993121122124132138165186270288295300337356
70123544487094122123125133139166187271289296301338357
71133645497195123124126134140167188272290297302339358
72143746507296124125127135141168189273291298303340359
730153847517397125126128136142169190274292299304341
741163948527498126127129137143170191275293300305342
752174049537599127128130138144171192276294301306343
7631841505476100128129131139145172193277295302307344
7741942515577101129130132140146173194278296303308345
7852043525678102130131133141147174195279297304309346
7962144535779103131132134142148175196280298305310347
8072245545880104132133135143149176197281299306311348
8182346555981105133134136144150177198282300307312349
8292447566082106134135137145151178199283301308313350
83102548576183107135136138146152179200284302309314351
84112649586284108136137139147153180201285303310315352
85122750596385109137138140148154181202286304311316353
86132851606486110138139141149155182203287305312317354
87142952616587111139140142150156183204288306313318355
88153053626688112140141143151157184205289307314319356
89163154636789113141142144152158185206290308315320357
90173255646890114142143145153159186207291309316321358
91183356656991115143144146154160187208292310317322359
920193457667092116144145147155161188209293311318323
931203558677193117145146148156162189210294312319324
942213659687294118146147149157163190211295313320325
953223760697395119147148150158164191212296314321326
964233861707496120148149151159165192213297315322327
975243962717597121149150152160166193214298316323328
986254063727698122150151153161167194215299317324329
997264164737799123151152154162168195216300318325330
10082742657478100124152153155163169196217301319326331
10192843667579101125153154156164170197218302320327332
102102944677680102126154155157165171198219303321328333
103113045687781103127155156158166172199220304322329334
104123146697882104128156157159167173200221305323330335
105133247707983105129157158160168174201222306324331336
106143348718084106130158159161169175202223307325332337
107153449728185107131159160162170176203224308326333338
108163550738286108132160161163171177204225309327334339
109173651748387109133161162164172178205226310328335340
110183752758488110134162163165173179206227311329336341
111193853768589111135163164166174180207228312330337342
112203954778690112136164165167175181208229313331338343
113214055788791113137165166168176182209230314332339344
114224156798892114138166167169177183210231315333340345
115234257808993115139167168170178184211232316334341346
116244358819094116140168169171179185212233317335342347
117254459829195117141169170172180186213234318336343348
118264560839296118142170171173181187214235319337344349
119274661849397119143171172174182188215236320338345350
120284762859498120144172173175183189216237321339346351
121294863869599121145173174176184190217238322340347352
1223049648796100122146174175177185191218239323341348353
1233150658897101123147175176178186192219240324342349354
1243251668998102124148176177179187193220241325343350355
1253352679099103125149177178180188194221242326344351356
12634536891100104126150178179181189195222243327345352357
12735546992101105127151179180182190196223244328346353358
12836557093102106128152180181183191197224245329347354359
129037567194103107129153181182184192198225246330348355
130138577295104108130154182183185193199226247331349356
131239587396105109131155183184186194200227248332350357
132340597497106110132156184185187195201228249333351358
133441607598107111133157185186188196202229250334352359
1340542617699108112134158186187189197203230251335353
13516436277100109113135159187188190198204231252336354
13627446378101110114136160188189191199205232253337355
13738456479102111115137161189190192200206233254338356
13849466580103112116138162190191193201207234255339357
139510476681104113117139163191192194202208235256340358
140611486782105114118140164192193195203209236257341359
1410712496883106115119141165193194196204210237258342
1421813506984107116120142166194195197205211238259343
1432914517085108117121143167195196198206212239260344
14431015527186109118122144168196197199207213240261345
14541116537287110119123145169197198200208214241262346
14651217547388111120124146170198199201209215242263347
14761318557489112121125147171199200202210216243264348
14871419567590113122126148172200201203211217244265349
14981520577691114123127149173201202204212218245266350
15091621587792115124128150174202203205213219246267351
151101722597893116125129151175203204206214220247268352
152111823607994117126130152176204205207215221248269353
153121924618095118127131153177205206208216222249270354
154132025628196119128132154178206207209217223250271355
155142126638297120129133155179207208210218224251272356
156152227648398121130134156180208209211219225252273357
157162328658499122131135157181209210212220226253274358
1581724296685100123132136158182210211213221227254275359
15901825306786101124133137159183211212214222228255276
16011926316887102125134138160184212213215223229256277
16122027326988103126135139161185213214216224230257278
16232128337089104127136140162186214215217225231258279
16342229347190105128137141163187215216218226232259280
16452330357291106129138142164188216217219227233260281
16562431367392107130139143165189217218220228234261282
16672532377493108131140144166190218219221229235262283
16782633387594109132141145167191219220222230236263284
16892734397695110133142146168192220221223231237264285
169102835407796111134143147169193221222224232238265286
170112936417897112135144148170194222223225233239266287
171123037427998113136145149171195223224226234240267288
172133138438099114137146150172196224225227235241268289
1731432394481100115138147151173197225226228236242269290
1741533404582101116139148152174198226227229237243270291
1751634414683102117140149153175199227228230238244271292
1761735424784103118141150154176200228229231239245272293
1771836434885104119142151155177201229230232240246273294
1781937444986105120143152156178202230231233241247274295
1792038455087106121144153157179203231232234242248275296
1802139465188107122145154158180204232233235243249276297
1812240475289108123146155159181205233234236244250277298
1822341485390109124147156160182206234235237245251278299
1832442495491110125148157161183207235236238246252279300
1842543505592111126149158162184208236237239247253280301
1852644515693112127150159163185209237238240248254281302
1862745525794113128151160164186210238239241249255282303
1872846535895114129152161165187211239240242250256283304
1882947545996115130153162166188212240241243251257284305
1893048556097116131154163167189213241242244252258285306
1903149566198117132155164168190214242243245253259286307
1913250576299118133156165169191215243244246254260287308
19233515863100119134157166170192216244245247255261288309
19334525964101120135158167171193217245246248256262289310
19435536065102121136159168172194218246247249257263290311
19536546166103122137160169173195219247248250258264291312
19637556267104123138161170174196220248249251259265292313
19738566368105124139162171175197221249250252260266293314
19839576469106125140163172176198222250251253261267294315
19940586570107126141164173177199223251252254262268295316
20041596671108127142165174178200224252253255263269296317
20142606772109128143166175179201225253254256264270297318
20243616873110129144167176180202226254255257265271298319
20344626974111130145168177181203227255256258266272299320
20445637075112131146169178182204228256257259267273300321
20546647176113132147170179183205229257258260268274301322
20647657277114133148171180184206230258259261269275302323
20748667378115134149172181185207231259260262270276303324
20849677479116135150173182186208232260261263271277304325
20950687580117136151174183187209233261262264272278305326
21051697681118137152175184188210234262263265273279306327
21152707782119138153176185189211235263264266274280307328
21253717883120139154177186190212236264265267275281308329
21354727984121140155178187191213237265266268276282309330
21455738085122141156179188192214238266267269277283310331
21556748186123142157180189193215239267268270278284311332
21657758287124143158181190194216240268269271279285312333
21758768388125144159182191195217241269270272280286313334
21859778489126145160183192196218242270271273281287314335
21960788590127146161184193197219243271272274282288315336
22061798691128147162185194198220244272273275283289316337
22162808792129148163186195199221245273274276284290317338
22263818893130149164187196200222246274275277285291318339
22364828994131150165188197201223247275276278286292319340
22465839095132151166189198202224248276277279287293320341
22566849196133152167190199203225249277278280288294321342
22667859297134153168191200204226250278279281289295322343
22768869398135154169192201205227251279280282290296323344
22869879499136155170193202206228252280281283291297324345
229708895100137156171194203207229253281282284292298325346
230718996101138157172195204208230254282283285293299326347
231729097102139158173196205209231255283284286294300327348
232739198103140159174197206210232256284285287295301328349
233749299104141160175198207211233257285286288296302329350
2347593100105142161176199208212234258286287289297303330351
2357694101106143162177200209213235259287288290298304331352
2367795102107144163178201210214236260288289291299305332353
2377896103108145164179202211215237261289290292300306333354
2387997104109146165180203212216238262290291293301307334355
2398098105110147166181204213217239263291292294302308335356
2408199106111148167182205214218240264292293295303309336357
24182100107112149168183206215219241265293294296304310337358
24283101108113150169184207216220242266294295297305311338359
243084102109114151170185208217221243267295296298306312339
244185103110115152171186209218222244268296297299307313340
245286104111116153172187210219223245269297298300308314341
246387105112117154173188211220224246270298299301309315342
247488106113118155174189212221225247271299300302310316343
248589107114119156175190213222226248272300301303311317344
249690108115120157176191214223227249273301302304312318345
250791109116121158177192215224228250274302303305313319346
251892110117122159178193216225229251275303304306314320347
252993111118123160179194217226230252276304305307315321348
2531094112119124161180195218227231253277305306308316322349
2541195113120125162181196219228232254278306307309317323350
2551296114121126163182197220229233255279307308310318324351
2561397115122127164183198221230234256280308309311319325352
2571498116123128165184199222231235257281309310312320326353
2581599117124129166185200223232236258282310311313321327354
25916100118125130167186201224233237259283311312314322328355
26017101119126131168187202225234238260284312313315323329356
26118102120127132169188203226235239261285313314316324330357
26219103121128133170189204227236240262286314315317325331358
26320104122129134171190205228237241263287315316318326332359
264021105123130135172191206229238242264288316317319327333
265122106124131136173192207230239243265289317318320328334
266223107125132137174193208231240244266290318319321329335
267324108126133138175194209232241245267291319320322330336
268425109127134139176195210233242246268292320321323331337
269526110128135140177196211234243247269293321322324332338
270627111129136141178197212235244248270294322323325333339
271728112130137142179198213236245249271295323324326334340
272829113131138143180199214237246250272296324325327335341
273930114132139144181200215238247251273297325326328336342
2741031115133140145182201216239248252274298326327329337343
2751132116134141146183202217240249253275299327328330338344
2761233117135142147184203218241250254276300328329331339345
2771334118136143148185204219242251255277301329330332340346
2781435119137144149186205220243252256278302330331333341347
2791536120138145150187206221244253257279303331332334342348
2801637121139146151188207222245254258280304332333335343349
2811738122140147152189208223246255259281305333334336344350
2821839123141148153190209224247256260282306334335337345351
2831940124142149154191210225248257261283307335336338346352
2842041125143150155192211226249258262284308336337339347353
2852142126144151156193212227250259263285309337338340348354
2862243127145152157194213228251260264286310338339341349355
2872344128146153158195214229252261265287311339340342350356
2882445129147154159196215230253262266288312340341343351357
2892546130148155160197216231254263267289313341342344352358
2902647131149156161198217232255264268290314342343345353359
29102748132150157162199218233256265269291315343344346354
29212849133151158163200219234257266270292316344345347355
29322950134152159164201220235258267271293317345346348356
29433051135153160165202221236259268272294318346347349357
29543152136154161166203222237260269273295319347348350358
29653253137155162167204223238261270274296320348349351359
297063354138156163168205224239262271275297321349350352
298173455139157164169206225240263272276298322350351353
299283556140158165170207226241264273277299323351352354
300393657141159166171208227242265274278300324352353355
3014103758142160167172209228243266275279301325353354356
3025113859143161168173210229244267276280302326354355357
3036123960144162169174211230245268277281303327355356358
3047134061145163170175212231246269278282304328356357359
30508144162146164171176213232247270279283305329357358
30619154263147165172177214233248271280284306330358359
3070210164364148166173178215234249272281285307331359
30801311174465149167174179216235250273282286308332
30912412184566150168175180217236251274283287309333
31023513194667151169176181218237252275284288310334
31134614204768152170177182219238253276285289311335
31245715214869153171178183220239254277286290312336
31356816224970154172179184221240255278287291313337
31467917235071155173180185222241256279288292314338
315781018245172156174181186223242257280289293315339
316891119255273157175182187224243258281290294316340
3179101220265374158176183188225244259282291295317341
31810111321275475159177184189226245260283292296318342
31911121422285576160178185190227246261284293297319343
32012131523295677161179186191228247262285294298320344
32113141624305778162180187192229248263286295299321345
32214151725315879163181188193230249264287296300322346
32315161826325980164182189194231250265288297301323347
32416171927336081165183190195232251266289298302324348
32517182028346182166184191196233252267290299303325349
32618192129356283167185192197234253268291300304326350
32719202230366384168186193198235254269292301305327351
32820212331376485169187194199236255270293302306328352
32921222432386586170188195200237256271294303307329353
33022232533396687171189196201238257272295304308330354
33123242634406788172190197202239258273296305309331355
33224252735416889173191198203240259274297306310332356
33325262836426990174192199204241260275298307311333357
33426272937437091175193200205242261276299308312334358
33527283038447192176194201206243262277300309313335359
336028293139457293177195202207244263278301310314336
337129303240467394178196203208245264279302311315337
338230313341477495179197204209246265280303312316338
339331323442487596180198205210247266281304313317339
340432333543497697181199206211248267282305314318340
341533343644507798182200207212249268283306315319341
342634353745517899183201208213250269284307316320342
3437353638465279100184202209214251270285308317321343
3448363739475380101185203210215252271286309318322344
3459373840485481102186204211216253272287310319323345
34610383941495582103187205212217254273288311320324346
34711394042505683104188206213218255274289312321325347
34812404143515784105189207214219256275290313322326348
34913414244525885106190208215220257276291314323327349
35014424345535986107191209216221258277292315324328350
35115434446546087108192210217222259278293316325329351
35216444547556188109193211218223260279294317326330352
35317454648566289110194212219224261280295318327331353
35418464749576390111195213220225262281296319328332354
35519474850586491112196214221226263282297320329333355
35620484951596592113197215222227264283298321330334356
35721495052606693114198216223228265284299322331335357
35822505153616794115199217224229266285300323332336358
35923515254626895116200218225230267286301324333337359
Table A3. The lines containing the point of AG(2,19).
Table A3. The lines containing the point of AG(2,19).
m0 020406080100120140160180200220240260280300320340
m1 121416181101121141161181201221241261281301321341
m2 222426282102122142162182202222242262282302322342
m3 323436383103123143163183203223243263283303323343
m4 424446484104124144164184204224244264284304324344
m5 525456585105125145165185205225245265285305325345
m6 626466686106126146166186206226246266286306326346
m7 727476787107127147167187207227247267287307327347
m8 828486888108128148168188208228248268288308328348
m9 929496989109129149169189209229249269289309329349
m10 1030507090110130150170190210230250270290310330350
m11 1131517191111131151171191211231251271291311331351
m12 1232527292112132152172192212232252272292312332352
m13 1333537393113133153173193213233253273293313333353
m14 1434547494114134154174194214234254274294314334354
m15 1535557595115135155175195215235255275295315335355
m16 1636567696116136156176196216236256276296316336356
m17 1737577797117137157177197217237257277297317337357
m18 1838587898118138158178198218238258278298318338358
m19 1939597999119139159179199219239259279299319339359

Appendix B

Table A4. The partition of AG(2,19)− in conics.
Table A4. The partition of AG(2,19)− in conics.
c001836547290108126144162180198216234252270288306324342
c111937557391109127145163181199217235253271289307325343
c222038567492110128146164182200218236254272290308326344
c332139577593111129147165183201219237255273291309327345
c442240587694112130148166184202220238256274292310328346
c552341597795113131149167185203221239257275293311329347
c662442607896114132150168186204222240258276294312330348
c772543617997115133151169187205223241259277295313331349
c882644628098116134152170188206224242260278296314332350
c992745638199117135153171189207225243261279297315333351
c101028466482100118136154172190208226244262280298316334352
c111129476583101119137155173191209227245263281299317335353
c121230486684102120138156174192210228246264282300318336354
c131331496785103121139157175193211229247265283301319337355
c141432506886104122140158176194212230248266284302320338356
c151533516987105123141159177195213231249267285303321339357
c161634527088106124142160178196214232250268286304322340358
c171735537189107125143161179197215233251269287305323341359
Table A5. The partition of AG(2,19)− in 4-arcs.
Table A5. The partition of AG(2,19)− in 4-arcs.
C0090180270
C1191181271
C2292182272
C3393183273
C4494184274
C5595185275
C6696186276
C7797187277
C8898188278
C9999189279
C1010100190280
C1111101191281
C1212102192282
C1313103193283
C1414104194284
C1515105195285
C1616106196286
C1717107197287
C1818108198288
C1919109199289
C2020110200290
C2121111201291
C2222112202292
C2323113203293
C2424114204294
C2525115205295
C2626116206296
C2727117207297
C2828118208298
C2929119209299
C3030120210300
C3131121211301
C3232122212302
C3333123213303
C3434124214304
C3535125215305
C3636126216306
C3737127217307
C3838128218308
C3939129219309
C4040130220310
C4141131221311
C4242132222312
C4343133223313
C4444134224314
C4545135225315
C4646136226316
C4747137227317
C4848138228318
C4949139229319
C5050140230320
C5151141231321
C5252142232322
C5353143233323
C5454144234324
C5555145235325
C5656146236326
C5757147237327
C5858148238328
C5959149239329
C6060150240330
C6161151241331
C6262152242332
C6363153243333
C6464154244334
C6565155245335
C6666156246336
C6767157247337
C6868158248338
C6969159249339
C7070160250340
C7171161251341
C7272162252342
C7373163253343
C7474164254344
C7575165255345
C7676166256346
C7777167257347
C7878168258348
C7979169259349
C8080170260350
C8181171261351
C8282172262352
C8383173263353
C8484174264354
C8585175265355
C8686176266356
C8787177267357
C8888178268358
C8989179269359

References

  1. Brown, J.M.N. Partitioning the complement of a simplex in PG(e,qd+1) into copies of PG(d,q). J. Geom. 1988, 33, 11–16. [Google Scholar] [CrossRef]
  2. Batten, L. Decompositions of finite projective planes. J. Contrib. 2002, 1, 149–159. Available online: https://hdl.handle.net/10536/DRO/DU:30001820 (accessed on 28 July 2025).
  3. Pardo, M.G.A. Daisy structure in Desarguesian projective planes. J. Aust. Math. Soc. 2003, 74, 145–154. [Google Scholar] [CrossRef][Green Version]
  4. Ebert, G.L. Partitioning projective geometries into caps. Canad. J. Math. 1985, 37, 1163–1175. [Google Scholar] [CrossRef]
  5. Mathon, R.; Street, A.P. Partitioning sets of triples into two small planes. Des. Codes Cryptogr. 2002, 27, 119–130. [Google Scholar] [CrossRef]
  6. Hazzazi, M.M.M. On Decompositions of Finite Projective Planes and Their Applications. Ph.D. Thesis, University of Sussex, Brighton, UK, 2019. Available online: https://hdl.handle.net/10779/uos.23468093.v1 (accessed on 28 July 2025).
  7. Hawtin, D.R. Transitive (q − 1)-fold packings of PGn(q). Discrete Math. 2025, 348, 114330. [Google Scholar] [CrossRef]
  8. Baker, R.D.; Bonisoli, A.; Cossidente, A.; Ebert, G.L. Mixed partitions of PG(5,q). Discrete Math. 1999, 208–209, 23–29. [Google Scholar] [CrossRef]
  9. Cossidente, A. Mixed partitions of PG(3,q). J. Geom. 2000, 68, 48–57. [Google Scholar] [CrossRef]
  10. Mellinger, K.E. Mixed partitions of PG(3,q2). Finite Fields Their Appl. 2004, 10, 626–635. [Google Scholar] [CrossRef][Green Version]
  11. Mathon, R.; Street, A.P. Mixed partitions of sets of triples into small planes. Discret. Math. 2004, 284, 209–215. [Google Scholar] [CrossRef][Green Version]
  12. Mellinger, K.E. Classical mixed partitions. Discrete Math. 2004, 283, 267–271. [Google Scholar] [CrossRef][Green Version]
  13. Ebert, G.L.; Mellinger, K.E. Mixed partitions and related designs. Des. Codes Cryptogr. 2007, 44, 15–23. [Google Scholar] [CrossRef]
  14. Bose, R.C. An Affine Analogue of Singer’s Theorem. J. Indian Math. Soc. 1942, 6, 1–15. [Google Scholar]
  15. Giordano, V. Arcs in cyclic affine planes. Innov. Incid. Geom. 2009, 6–7, 203–209. Available online: https://msp.org/iig/2008/6-1/iig-v6-n1-p13-s.pdf (accessed on 28 July 2025).
  16. Korchmáros, G.; Sonnino, A. On arcs sharing the maximum number of points with ovals in cyclic affine planes of odd order. J. Combin. Designs 2010, 18, 25–47. [Google Scholar] [CrossRef]
  17. Hirschfeld, J.W.P. Projective Geometries over Finite Fields, 2nd ed.; Oxford University Press: Oxford, UK, 1998. [Google Scholar] [CrossRef]
  18. Innamorati, S.; Tondini, D. The yin-yang structure of the affine plane of order four. ARS Comb. 2013, 110, 193–197. Available online: https://combinatorialpress.com/article/ars/Volume%20110/volume-110-paper-19.pdf (accessed on 28 July 2025).
  19. Berardi, L.; Masini, T. Möbius-Kantor configurations in the affine plane of order 7. J. Geom. 2007, 86, 11–20. [Google Scholar] [CrossRef]
  20. Coxeter, H.S.M. Self-dual configurations and regular graphs. Bull. Am. Math. Soc. 1950, 56, 413–455. Available online: https://www.ams.org/journals/bull/1950-56-05/S0002-9904-1950-09407-5/ (accessed on 28 July 2025). [CrossRef]
  21. Hansen, T.; Mullen, G.L. Primitive Polynomials Over Finite Fields. Math. Comput. 1992, 59, 639–643. [Google Scholar] [CrossRef]
Figure 1. Two quadrilaterals simultaneously inscribed and circumscribed.
Figure 1. Two quadrilaterals simultaneously inscribed and circumscribed.
Axioms 14 00688 g001
Figure 2. The Möbius–Kantor configuration (83).
Figure 2. The Möbius–Kantor configuration (83).
Axioms 14 00688 g002
Figure 3. The cyclic partition of AG(2,7).
Figure 3. The cyclic partition of AG(2,7).
Axioms 14 00688 g003
Table 1. The cyclic structure of the points of AG(2,7).
Table 1. The cyclic structure of the points of AG(2,7).
= 0 , 0
0 = (1,0)1 = (3,4)2 = (1,3)3 = (4,6)4 = (0,6)5 = (2,4)
6 = (5,6)7 = (3,3)8 = (3,0)9 = (2,5)10 = (3,2)11 = (5,4)
12 = (0,4)13 = (6,5)14 = (1,4)15 = (2,2)16 = (2,0)17 = (6,1)
18 = (2,6)19 = (1,5)20 = (0,5)21 = (4,1)22 = (3,5)23 = (6,6)
24 = (6,0)25 = (4,3)26 = (6,4)27 = (3,1)28 = (0,1)29 = (5,3)
30 = (2,1)31 = (4,4)32 = (4,0)33 = (5,2)34 = (4,5)35 = (2,3)
36 = (0,3)37 = (1,2)38 = (6,3)39 = (5,5)40 = (5,0)41 = (1,6)
42 = (5,1)43 = (6,2)44 = (0,2)45 = (3,6)46 = (4,2)47 = (1,1)
Table 2. The starting line.
Table 2. The starting line.
0021419374147
Table 3. The lines not containing the point of AG(2,7).
Table 3. The lines not containing the point of AG(2,7).
0021419374147
101315203842
212416213943
323517224044
434618234145
545719244246
656820254347
70679212644
817810222745
928911232846
10391012242947
11041011132530
12151112142631
13261213152732
14371314162833
15481415172934
16591516183035
176101617193136
187111718203237
198121819213338
209131920223439
2110142021233540
2211152122243641
2312162223253742
2413172324263843
2514182425273944
2615192526284045
2716202627294146
2817212728304247
290182228293143
301192329303244
312202430313345
323212531323446
334222632333547
34052327333436
35162428343537
36272529353638
37382630363739
38492731373840
395102832383941
406112933394042
417123034404143
428133135414244
439143236424345
4410153337434446
4511163438444547
460121735394546
471131836404647
Table 4. The lines containing the point of AG(2,7).
Table 4. The lines containing the point of AG(2,7).
m0 0816243240
m1 1917253341
m2 21018263442
m3 31119273543
m4 41220283644
m5 51321293745
m6 61422303846
m7 71523313947
Table 5. The partition of AG(2,7)− into 6 conics.
Table 5. The partition of AG(2,7)− into 6 conics.
C006121824303642
C117131925313743
C228142026323844
C339152127333945
C4410162228344046
C5511172329354147
Table 6. The partition of AG(2,7)− into 12 quadrilaterals.
Table 6. The partition of AG(2,7)− into 12 quadrilaterals.
C00122436
C11132537
C22142638
C33152739
C44162840
C55172941
C66183042
C77193143
C88203244
C99213345
C1010223446
C1111233547
Table 7. The starting line.
Table 7. The starting line.
0024525355636996117201219226231268287302325334338
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Innamorati, S. Partitioning AG(2,q), q≡7 Mod 12, into MöbiusKantor Configurations and One Point. Axioms 2025, 14, 688. https://doi.org/10.3390/axioms14090688

AMA Style

Innamorati S. Partitioning AG(2,q), q≡7 Mod 12, into MöbiusKantor Configurations and One Point. Axioms. 2025; 14(9):688. https://doi.org/10.3390/axioms14090688

Chicago/Turabian Style

Innamorati, Stefano. 2025. "Partitioning AG(2,q), q≡7 Mod 12, into MöbiusKantor Configurations and One Point" Axioms 14, no. 9: 688. https://doi.org/10.3390/axioms14090688

APA Style

Innamorati, S. (2025). Partitioning AG(2,q), q≡7 Mod 12, into MöbiusKantor Configurations and One Point. Axioms, 14(9), 688. https://doi.org/10.3390/axioms14090688

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop